Synthesis and Characterization of Potential and Degraded Impurities of Regadenoson

2020 ◽  
Vol 16 (8) ◽  
pp. 1130-1139
Author(s):  
Singaram Sathiyanarayanan ◽  
Chidambaram Subramanian Venkatesan ◽  
Senthamaraikannan Kabilan

Background: Regadenoson is an A2A adenosine receptor agonist that is a coronary vasodilator and commonly used as a pharmacologic cardiac stressing agents. Methods: HPLC method was used for the analysis of related substances. The degraded impurities during the process were isolated and characterized by IR, Mass and NMR spectral analysis. Results: Forced degradation study of regadenoson under conditions of hydrolysis (neutral, acidic and alkaline) and oxidations suggested in the ICH Q1A(R2) was accomplished. The drug showed significant degradation under all the above conditions. On the whole, five novel degradation products were found under diverse conditions along with process related impurities which were not reported earlier. Conclusion: All the degradation products were well characterized by using advanced spectroscopic techniques like IR, 1H NMR, 13C NMR and Mass spectra. The identification of these impurities will be productive for the quality control during the production and stability behavior of the regadenoson drug substance.

2017 ◽  
Vol 100 (4) ◽  
pp. 1029-1037 ◽  
Author(s):  
Liang Zou ◽  
Lili Sun ◽  
Hui Zhang ◽  
Wenkai Hui ◽  
Qiaogen Zou ◽  
...  

Abstract The characterization of process-related impurities and degradation products of safinamide mesilate (SAFM) in bulk drug and a stability-indicating HPLC method for the separation and quantification of all the impurities were investigated. Four process-related impurities (Imp-B, Imp-C, Imp-D, and Imp-E) were found in the SAFM bulk drug. Five degradation products (Imp-A, Imp-C, Imp-D, Imp-E, and Imp-F) were observed in SAFM under oxidative conditions. Imp-C, Imp-D, and Imp-E were also degradation products and process-related impurities. Remarkably, one new compound, identified as (S)-2-[4-(3-fluoro-benzyloxy) benzamido] propanamide (i.e., Imp-D), is being reported here as an impurity for the first time. Furthermore, the structures of the aforementioned impurities were characterized and confirmed via IR, NMR, and MS techniques, and the most probable formation mechanisms of all impurities proposed according to the synthesis route. Optimum separation was achieved on an Inertsil ODS-3 column (250 × 4.6 mm, 5 μm), using 0.1% formic acid in water (pH adjusted to 5.0) and acetonitrile as the mobile phase in gradient mode. The proposed method was found to be stability-indicating, precise, linear, accurate, sensitive, and robust for the quantitation of SAFM and its process-related substances, including its degradation products.


RSC Advances ◽  
2015 ◽  
Vol 5 (85) ◽  
pp. 69273-69288 ◽  
Author(s):  
Pradipbhai D. Kalariya ◽  
Prinesh N. Patel ◽  
Mahesh Sharma ◽  
Prabha Garg ◽  
R. Srinivas ◽  
...  

Forced degradation study of blonanserin and structural elucidation of its degradation products was performed using high resolution tandem mass spectrometry.


2015 ◽  
Vol 7 (18) ◽  
pp. 7659-7673 ◽  
Author(s):  
A. Abiramasundari ◽  
V. Sudarsanam ◽  
Kamala K. Vasu

A systematic forced degradation study of bambuterol was carried out according to ICH guidelines. Twelve degradation products of bambuterol were identified and characterized. Plausible mechanisms of formation of the degradation products are discussed.


Author(s):  
S. K. REEHANA ◽  
K. SUJANA

Objective: The current study focused on the development, validation, and characterization of forced degradation products using LC-MS/MS. Methods: A simple, selective, validated and well-defined isocratic HPLC methodology for the quantitative determination of Tucatinib at a wavelength of 239 nm. An isocratic elution of samples was performed on an Inertsil ODS (250x4.6 mm, 5m) column with a mobile phase of 70:30v/v Acetonitrile and formic acid (0.1%) delivered at a flow rate of 1.0 ml/min. MS/MS was used to characterize degradation products formed in the forced degradation study. The validation and characterization of forced degradation products were performed in accordance with ICH guidelines. Results: Over the concentration range of 5-100μg/ml, a good linear response was obtained. Tucatinib's LOD and LOQ were determined to be 0.05 and 0.5, respectively. According to standard guidelines, the method was quantitatively evaluated in terms of system suitability, linearity, precision, accuracy, and robustness, and the results were found to be within acceptable limits. The drug was degraded under acidic, alkaline, and reduction conditions in forced degradation studies. Conclusion: The method was found to be applicable for routine tucatinib analysis. Because no LC-MS/MS method for estimating tucatinib and its degradation products has been reported in the literature. There is a need to develop a method for studying the entire tucatinib degradation pathway.


2013 ◽  
Vol 781-784 ◽  
pp. 68-71 ◽  
Author(s):  
Fang Tan

A reversed phase HPLC method was developed and validated for analysis of roflumilast, its related substances and degradation products, using Ecosil C18 column (250×4.6 mm, 5 μm) with a flow rate of 1.0 ml/min and detection wavelength of 215nm. The mobile phase was a mixture of acetonitrile and 0.005mol·L-1ammonium dihydrogen phosphate buffer pH 3.5 in the ratio of 48:52 (v/v). The samples were analyzed using 20 μl injection volume and the column temperature was maintained at 30°C. The limit of detection and limit of quantitation were found to be 2.6 ng/ml and 8ng/ml, respectively. The stability-indicating capability of method was established by forced degradation studies and method demonstrated successful separation of drug, its related substances and degradation products. The method is sensitive, specific, accurate, precise and stability indicating for the quantitation of drug, its related substances and other degradation compounds.


Sign in / Sign up

Export Citation Format

Share Document