Facile Synthesis and Biological Evaluation of Cyclopropyl-Pyrazole Hybrids in [bmim][PF6]-Water Biphasic System as Antifungal Agents

2019 ◽  
Vol 4 (3) ◽  
pp. 152-158
Author(s):  
P.C. Burde ◽  
A.M. Rahatgaonkar

3-Cyclopropyl-5-(4-substituted)-1-phenyl-4,5-dihydro-1H-pyrazoles derived from corresponding chalcones were synthesized and evaluated for their biological activities. A convenient synthesis of a library of these compounds in 1-butyl-3-methylimidazolium hexafluorophosphate-water biphasic system at ambient temperature has been accomplished. The ionic liquid, [bmim][PF6] and water which are immiscible, has been easily recycled and reused after separation of the products without any noticeable diminution in its activity.

2019 ◽  
Vol 4 (8) ◽  
pp. 2258-2266 ◽  
Author(s):  
Mohd Adil Shareef ◽  
Hemshikha Rajpurohit ◽  
K. Sirisha ◽  
Ibrahim Bin Sayeed ◽  
Irfan Khan ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3224
Author(s):  
Leander Geske ◽  
Ulrich Kauhl ◽  
Mohamed E. M. Saeed ◽  
Anja Schüffler ◽  
Eckhard Thines ◽  
...  

The biological activities of shancigusin C (1) and bletistrin G (2), natural products isolated from orchids, are reported along with their first total syntheses. The total synthesis of shancigusin C (1) was conducted by employing the Perkin reaction to forge the central stilbene core, whereas the synthesis of bletistrin G (2) was achieved by the Wittig olefination followed by several regioselective aromatic substitution reactions. Both syntheses were completed by applying only renewable starting materials according to the principles of xylochemistry. The cytotoxic properties of shancigusin C (1) and bletistrin G (2) against tumor cells suggest suitability as a starting point for further structural variation.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2084
Author(s):  
Mingkun Li ◽  
Heping Li ◽  
Hongli Liu ◽  
Zhiming Zou ◽  
Chaoyu Xie

The development of natural biomass materials with excellent properties is an attractive way to improve the application range of natural polysaccharides. Bagasse Xylan (BX) is a natural polysaccharide with various biological activities, such as antitumor, antioxidant, etc. Its physic-chemical and biological properties can be improved by functionalization. For this purpose, a novel glycidyl metharcylate/phytic acid based on a BX composite derivative was synthesized by a free radical polymerization technique with glycidyl metharcylate (GMA; GMABX) and further esterification with phytic acid (PA; GMABX-PA) in ionic liquid. The effects of the reaction conditions (i.e., temperature, time, initiator concentration, catalyst concentration, GMA concentration, PA concentration, mass of ionic liquid) on grafting rate(G), conversion rate(C) and degree of substitution(DS) are discussed. The structure of the composite material structure was confirmed by FTIR, 1H NMR and XRD. SEM confirmed the particle morphology of the composite derivative. The thermal stability of GMABX-PA was determined by TG-DTG. Molecular docking was further performed to study the combination mode of the GMABX-PA into the active site of two lung cancer proteins (5XNV, 2EB2) and a blood cancer protein (2M6N). In addition, tumor cell proliferation inhibition assays for BX, GMABX-PA were carried out using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetraz -olium bromide (MTT) method. The results showed that various reaction conditions exhibited favorable gradient curves, and that a maximum G of 56% for the graft copolymerization and a maximum DS of 0.267 can be achieved. The thermal stability was significantly improved, as demonstrated by the fact that there was still 60% residual at 800 °C. The molecular docking software generated satisfactory results with regard to the evaluated binding energy and combining sites. The inhibition ratio of GMABX-PA on NCI-H460 (lung cancer cells) reached 29.68% ± 4.45%, which is five times higher than that of BX. Therefore, the material was shown to be a potential candidate for biomedical applications as well as for use as a heat resistant material.


2019 ◽  
Vol 62 (3) ◽  
Author(s):  
Israel Bonilla Landa ◽  
Osvaldo León De la Cruz ◽  
Diana Sánchez Rangel ◽  
Randy Ortiz Castro ◽  
Benjamin Rodriguez Haas ◽  
...  

Abstract. Fusarium Dieback, a new and lethal insect-vectored disease can host over 300 tree species including the avocado trees. This problem has recently attracted the attention of synthetic chemist not only to develop new triazol antifungal agents but also due to severe drug resistance to “classic” triazol antifungal agents. Here, a series of novel antifungal triazoles with a p-trifluoromethylphenyl moiety were synthesized and characterized by spectroscopic and spectrometric methods. Most of the target compounds synthesized showed from modest to good inhibitory activity and less phytotoxicity in comparison with the commercially available propiconazol; in particular, compounds 7 and 13 were active against both Fusarium solani and Fusarium euwallaceae. The results showed that compounds 7, 13, and 4 have great potential to be developed as new antifungal agents because of both good antifungal activity and low phytotoxicity. SAR showed that free alcohols and not O-protected compounds significantly influence the activity. Hence, a-methyl-a-1,2,4-triazole emerged as novel compound to develop new ketone-triazole-type antifungal agents for the management of Fusarium Dieback disease Resumen. Fusarium Dieback es una nueva enfermedad letal transmitida por insectos que actúan como vectores y puede atacar a más de 300 especies de árboles, incluidos los árboles de aguacate. Recientemente, este problema ha atraído la atención de los químicos sintéticos para desarrollar nuevos agentes antifúngicos triazólicos debido a la resistencia severa que desarrollan los insectos a los agentes antifúngicos triazólicos "clásicos". Durante este trabajo, se sintetizaron nuevos triazoles antifúngicos que contienen un grupo p-trifluorometilfenilo y se caracterizaron por métodos espectroscópicos y espectrométricos. La mayoría de los compuestos diana sintetizados mostraron una actividad inhibidora de modesta a buena y menos fitotoxicidad en comparación con el propiconazol que es comercialmente disponible; en particular, los compuestos 7 y 13 mostraron ser activos contra Fusarium solani y Fusarium euwallaceae. Los resultados mostraron que los compuestos 7, 13 y 4 tienen un gran potencial para desarrollarse como nuevos agentes antifúngicos debido a la buena actividad antifúngica y su baja fitotoxicidad. SAR mostró que los alcoholes libres y no los compuestos O-protegidos influyen significativamente en la actividad. Por lo tanto, el α-metil-α-1,2,4-triazol surgió como un nuevo compuesto líder para desarrollar nuevos agentes antifúngicos tipo cetona-triazol para el tratamiento de la enfermedad Fusarium Dieback.


ChemInform ◽  
2013 ◽  
Vol 44 (8) ◽  
pp. no-no
Author(s):  
Stella Manta ◽  
Vanessa Parmenopoulou ◽  
Christos Kiritsis ◽  
Athina Dimopoulou ◽  
Nikolaos Kollatos ◽  
...  

2019 ◽  
Vol 24 (4) ◽  
pp. 1065-1075 ◽  
Author(s):  
Rui Yang ◽  
Wenhao Du ◽  
Huan Yuan ◽  
Tianhong Qin ◽  
Renxiao He ◽  
...  

2016 ◽  
Vol 40 (4) ◽  
pp. 3047-3058 ◽  
Author(s):  
Dnyaneshwar D. Subhedar ◽  
Mubarak H. Shaikh ◽  
Firoz A. Kalam Khan ◽  
Jaiprakash N. Sangshetti ◽  
Vijay M. Khedkar ◽  
...  

A one-pot three-component facile synthesis of N-sulfonamidyl-4-thiazolidinone derivatives using a [HDBU][HSO4] reusable ionic liquid was carried out, together with an investigation into their antifungal and antioxidant properties and a molecular docking study.


Sign in / Sign up

Export Citation Format

Share Document