scholarly journals Dolly Transport Experiment Using One Actuator Robot

Author(s):  
Kouyou IWAKI ◽  
Ryousuke MORITA ◽  
Satoshi ITO
Keyword(s):  
2010 ◽  
Vol 10 (3) ◽  
pp. 1345-1359 ◽  
Author(s):  
G. G. Pfister ◽  
L. K. Emmons ◽  
D. P. Edwards ◽  
A. Arellano ◽  
T. Campos ◽  
...  

Abstract. We analyze the transport of pollution across the Pacific during the NASA INTEX-B (Intercontinental Chemical Transport Experiment Part B) campaign in spring 2006 and examine how this year compares to the time period for 2000 through 2006. In addition to aircraft measurements of carbon monoxide (CO) collected during INTEX-B, we include in this study multi-year satellite retrievals of CO from the Measurements of Pollution in the Troposphere (MOPITT) instrument and simulations from the chemistry transport model MOZART-4. Model tracers are used to examine the contributions of different source regions and source types to pollution levels over the Pacific. Additional modeling studies are performed to separate the impacts of inter-annual variability in meteorology and dynamics from changes in source strength. Interannual variability in the tropospheric CO burden over the Pacific and the US as estimated from the MOPITT data range up to 7% and a somewhat smaller estimate (5%) is derived from the model. When keeping the emissions in the model constant between years, the year-to-year changes are reduced (2%), but show that in addition to changes in emissions, variable meteorological conditions also impact transpacific pollution transport. We estimate that about 1/3 of the variability in the tropospheric CO loading over the contiguous US is explained by changes in emissions and about 2/3 by changes in meteorology and transport. Biomass burning sources are found to be a larger driver for inter-annual variability in the CO loading compared to fossil and biofuel sources or photochemical CO production even though their absolute contributions are smaller. Source contribution analysis shows that the aircraft sampling during INTEX-B was fairly representative of the larger scale region, but with a slight bias towards higher influence from Asian contributions.


2008 ◽  
Vol 8 (11) ◽  
pp. 2999-3014 ◽  
Author(s):  
A. van Donkelaar ◽  
R. V. Martin ◽  
W. R. Leaitch ◽  
A. M. Macdonald ◽  
T. W. Walker ◽  
...  

Abstract. We interpret a suite of satellite, aircraft, and ground-based measurements over the North Pacific Ocean and western North America during April–May 2006 as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign to understand the implications of long-range transport of East Asian emissions to North America. The Canadian component of INTEX-B included 33 vertical profiles from a Cessna 207 aircraft equipped with an aerosol mass spectrometer. Long-range transport of organic aerosols was insignificant, contrary to expectations. Measured sulfate plumes in the free troposphere over British Columbia exceeded 2 μg/m3. We update the global anthropogenic emission inventory in a chemical transport model (GEOS-Chem) and use it to interpret the observations. Aerosol Optical Depth (AOD) retrieved from two satellite instruments (MISR and MODIS) for 2000–2006 are analyzed with GEOS-Chem to estimate an annual growth in Chinese sulfur emissions of 6.2% and 9.6%, respectively. Analysis of aircraft sulfate measurements from the NASA DC-8 over the central Pacific, the NSF C-130 over the east Pacific and the Cessna over British Columbia indicates most Asian sulfate over the ocean is in the lower free troposphere (800–600 hPa), with a decrease in pressure toward land due to orographic effects. We calculate that 56% of the measured sulfate between 500–900 hPa over British Columbia is due to East Asian sources. We find evidence of a 72–85% increase in the relative contribution of East Asian sulfate to the total burden in spring off the northwest coast of the United States since 1985. Campaign-average simulations indicate anthropogenic East Asian sulfur emissions increase mean springtime sulfate in Western Canada at the surface by 0.31 μg/m3 (~30%) and account for 50% of the overall regional sulfate burden between 1 and 5 km. Mean measured daily surface sulfate concentrations taken in the Vancouver area increase by 0.32 μg/m3 per 10% increase in the simulated fraction of Asian sulfate, and suggest current East Asian emissions episodically degrade local air quality by more than 1.5 μg/m3.


In the article, the application of modern MEMS accelerometers to evaluate driver training is discussed. Data from a transport experiment with Tatra 815 on a training polygon consisting of 4 types of surfaces were used, and the driver completed 4 individual laps. The tested parameters showed statistically significant differences between selected laps and surfaces (sections) depending on the driving style and the average speed. It is clear from the evaluation of the ride that the driver is gradually improving when driving on the polygon, as assumed. However, from a certain moment the magnitude of generated shocks exceeds normatively determined values. The design part determines specific requirements on driving characteristics of a driver during a driver training.


1984 ◽  
Author(s):  
Ronald J. Avanzino ◽  
Gary W. Zellweger ◽  
Vance C. Kennedy ◽  
S. Marc Zand ◽  
Kenneth E. Bencala

1994 ◽  
Vol 65 (4) ◽  
pp. 1441-1443 ◽  
Author(s):  
Peter Spädtke ◽  
Ian Brown ◽  
Paul Fojas

Sign in / Sign up

Export Citation Format

Share Document