scholarly journals Stabilizing selection and the evolution of genetic variance in multivariate traits in Drosophila serrata

2016 ◽  
Author(s):  
Jacqueline Sztepanacz
2021 ◽  
Vol 118 (31) ◽  
pp. e2026217118
Author(s):  
Robert J. Dugand ◽  
J. David Aguirre ◽  
Emma Hine ◽  
Mark W. Blows ◽  
Katrina McGuigan

Genetic variance is not equal for all multivariate combinations of traits. This inequality, in which some combinations of traits have abundant genetic variation while others have very little, biases the rate and direction of multivariate phenotypic evolution. However, we still understand little about what causes genetic variance to differ among trait combinations. Here, we investigate the relative roles of mutation and selection in determining the genetic variance of multivariate phenotypes. We accumulated mutations in an outbred population of Drosophila serrata and analyzed wing shape and size traits for over 35,000 flies to simultaneously estimate the additive genetic and additive mutational (co)variances. This experimental design allowed us to gain insight into the phenotypic effects of mutation as they arise and come under selection in naturally outbred populations. Multivariate phenotypes associated with more (less) genetic variance were also associated with more (less) mutational variance, suggesting that differences in mutational input contribute to differences in genetic variance. However, mutational correlations between traits were stronger than genetic correlations, and most mutational variance was associated with only one multivariate trait combination, while genetic variance was relatively more equal across multivariate traits. Therefore, selection is implicated in breaking down trait covariance and resulting in a different pattern of genetic variance among multivariate combinations of traits than that predicted by mutation and drift. Overall, while low mutational input might slow evolution of some multivariate phenotypes, stabilizing selection appears to reduce the strength of evolutionary bias introduced by pleiotropic mutation.


2021 ◽  
Vol 288 (1960) ◽  
Author(s):  
Adam J. Reddiex ◽  
Stephen F. Chenoweth

In evolutionary quantitative genetics, the genetic variance–covariance matrix, G , and the vector of directional selection gradients, β , are key parameters for predicting multivariate selection responses and genetic constraints. Historically, investigations of G and β have not overlapped with those dissecting the genetic basis of quantitative traits. Thus, it remains unknown whether these parameters reflect pleiotropic effects at individual loci. Here, we integrate multivariate genome-wide association study (GWAS) with G and β estimation in a well-studied system of multivariate constraint: sexual selection on male cuticular hydrocarbons (CHCs) in Drosophila serrata . In a panel of wild-derived re-sequenced lines, we augment genome-based restricted maximum likelihood to estimate G alongside multivariate single nucleotide polymorphism (SNP) effects, detecting 532 significant associations from 1 652 276 SNPs. Constraint was evident, with β lying in a direction of G with low evolvability. Interestingly, minor frequency alleles typically increased male CHC-attractiveness suggesting opposing natural selection on β . SNP effects were significantly misaligned with the major eigenvector of G , g max , but well aligned to the second and third eigenvectors g 2 and g 3 . We discuss potential factors leading to these varied results including multivariate stabilizing selection and mutational bias. Our framework may be useful as researchers increasingly access genomic methods to study multivariate selection responses in wild populations.


1989 ◽  
Vol 54 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Peter D. Keightley ◽  
William G. Hill

SummaryA model of genetic variation of a quantitative character subject to the simultaneous effects of mutation, selection and drift is investigated. Predictions are obtained for the variance of the genetic variance among independent lines at equilibrium with stabilizing selection. These indicate that the coefficient of variation of the genetic variance among lines is relatively insensitive to the strength of stabilizing selection on the character. The effects on the genetic variance of a change of mode of selection from stabilizing to directional selection are investigated. This is intended to model directional selection of a character in a sample of individuals from a natural or long-established cage population. The pattern of change of variance from directional selection is strongly influenced by the strengths of selection at individual loci in relation to effective population size before and after the change of regime. Patterns of change of variance and selection responses from Monte Carlo simulation are compared to selection responses observed in experiments. These indicate that changes in variance with directional selection are not very different from those due to drift alone in the experiments, and do not necessarily give information on the presence of stabilizing selection or its strength.


2014 ◽  
Vol 369 (1649) ◽  
pp. 20130255 ◽  
Author(s):  
Geir H. Bolstad ◽  
Thomas F. Hansen ◽  
Christophe Pélabon ◽  
Mohsen Falahati-Anbaran ◽  
Rocío Pérez-Barrales ◽  
...  

If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance.


2020 ◽  
Author(s):  
Julie M. Collet ◽  
Jacqueline L Sztepanacz

AbstractThe total strength of sexual selection on males depends on the relationship between various components of pre- and post-copulatory fitness. Misalignment between male and female interests creates inter-locus sexual conflict, where the fitness of one sex is increased at the expense of the other. Although rarely considered, mating behaviours can also be genetically correlated between males and females, creating intra-locus sexual conflict, where beneficial alleles in one sex are costly when expressed in the other sex. How inter- and intra-locus sexual conflicts operate on the expression of mating behaviours remains little understood. Here, we study male attractiveness, mating latency and copulation duration in two populations of the polyandrous Drosophila serrata. Univariate analyses show little genetic variance in mating latency, and that males, but not females, contribute to copulation duration genetic variance. Further, multivariate analyses revealed little covariance between the studied traits. However, analyses considering male and female contribution in a single framework supported genetic contributions from both sexes for mating behaviours and complex patterns of between sexes correlations. Finally, our study did not find any association between those mating behaviours and fitness component, specifically (i) no phenotypic covariance between male attractiveness and mating latency and, (ii) longer copulations did not result in the production of more offspring. With no detectable fitness benefits in any sexes for shorter mating latency or longer copulation duration, our results do not support the presence of inter-nor intra-locus sexual conflict for these mating traits.


Genetics ◽  
1992 ◽  
Vol 132 (2) ◽  
pp. 603-618 ◽  
Author(s):  
A S Kondrashov ◽  
M Turelli

Abstract Apparent stabilizing selection on a quantitative trait that is not causally connected to fitness can result from the pleiotropic effects of unconditionally deleterious mutations, because as N. Barton noted, "...individuals with extreme values of the trait will tend to carry more deleterious alleles...." We use a simple model to investigate the dependence of this apparent selection on the genomic deleterious mutation rate, U; the equilibrium distribution of K, the number of deleterious mutations per genome; and the parameters describing directional selection against deleterious mutations. Unlike previous analyses, we allow for epistatic selection against deleterious alleles. For various selection functions and realistic parameter values, the distribution of K, the distribution of breeding values for a pleiotropically affected trait, and the apparent stabilizing selection function are all nearly Gaussian. The additive genetic variance for the quantitative trait is kQa2, where k is the average number of deleterious mutations per genome, Q is the proportion of deleterious mutations that affect the trait, and a2 is the variance of pleiotropic effects for individual mutations that do affect the trait. In contrast, when the trait is measured in units of its additive standard deviation, the apparent fitness function is essentially independent of Q and a2; and beta, the intensity of selection, measured as the ratio of additive genetic variance to the "variance" of the fitness curve, is very close to s = U/k, the selection coefficient against individual deleterious mutations at equilibrium. Therefore, this model predicts appreciable apparent stabilizing selection if s exceeds about 0.03, which is consistent with various data. However, the model also predicts that beta must equal Vm/VG, the ratio of new additive variance for the trait introduced each generation by mutation to the standing additive variance. Most, although not all, estimates of this ratio imply apparent stabilizing selection weaker than generally observed. A qualitative argument suggests that even when direct selection is responsible for most of the selection observed on a character, it may be essentially irrelevant to the maintenance of variation for the character by mutation-selection balance. Simple experiments can indicate the fraction of observed stabilizing selection attributable to the pleiotropic effects of deleterious mutations.


2020 ◽  
Author(s):  
Wen Huang ◽  
Mary Anna Carbone ◽  
Richard F. Lyman ◽  
Robert H. H. Anholt ◽  
Trudy F. C. Mackay

AbstractThe genetics of phenotypic responses to changing environments remains elusive. Using whole genome quantitative gene expression as a model, we studied how the genetic architecture of regulatory variation in gene expression changed in a population of fully sequenced inbred Drosophila melanogaster strains when flies developed at different environments (25 °C and 18 °C). We found a substantial fraction of the transcriptome exhibited genotype by environment interaction, implicating environmentally plastic genetic architecture of gene expression. Genetic variance in expression increased at 18 °C relative to 25 °C for most genes that had a change in genetic variance. Although the majority of expression quantitative trait loci (eQTLs) for the gene expression traits in the two environments were shared and had similar effects, analysis of the environment-specific eQTLs revealed enrichment of binding sites for two transcription factors. Finally, although genotype by environment interaction in gene expression could potentially disrupt genetic networks, the co-expression networks were highly conserved across environments. Genes with higher network connectivity were under stronger stabilizing selection, suggesting that stabilizing selection on expression plays an important role in promoting network robustness.


2010 ◽  
Vol 8 (58) ◽  
pp. 720-739 ◽  
Author(s):  
Harold P. de Vladar ◽  
Nick H. Barton

By exploiting an analogy between population genetics and statistical mechanics, we study the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. This requires us to track only four macroscopic variables, instead of the distribution of all the allele frequencies that influence the trait. These macroscopic variables are the expectations of: the trait mean and its square, the genetic variance, and of a measure of heterozygosity, and are derived from a generating function that is in turn derived by maximizing an entropy measure. These four macroscopics are enough to accurately describe the dynamics of the trait mean and of its genetic variance (and in principle of any other quantity). Unlike previous approaches that were based on an infinite series of moments or cumulants, which had to be truncated arbitrarily, our calculations provide a well-defined approximation procedure. We apply the framework to abrupt and gradual changes in the optimum, as well as to changes in the strength of stabilizing selection. Our approximations are surprisingly accurate, even for systems with as few as five loci. We find that when the effects of drift are included, the expected genetic variance is hardly altered by directional selection, even though it fluctuates in any particular instance. We also find hysteresis, showing that even after averaging over the microscopic variables, the macroscopic trajectories retain a memory of the underlying genetic states.


Sign in / Sign up

Export Citation Format

Share Document