scholarly journals BIOLOGICAL AND COGNITIVE MARKERS OF PRESENILIN1 E280A AUTOSOMAL DOMINANT ALZHEIMER’S DISEASE: A COMPREHENSIVE REVIEW OF THE COLOMBIAN KINDRED

Author(s):  
J.T. Fuller ◽  
A. Cronin-Golomb ◽  
J.R. Gatchel ◽  
D.J. Norton ◽  
E. Guzmán-Vélez ◽  
...  

The study of individuals with autosomal dominant Alzheimer’s disease affords one of the best opportunities to characterize the biological and cognitive changes of Alzheimer’s disease that occur over the course of the preclinical and symptomatic stages. Unifying the knowledge gained from the past three decades of research in the world’s largest single-mutation autosomal dominant Alzheimer’s disease kindred — a family in Antioquia, Colombia with the E280A mutation in the Presenilin1 gene — will provide new directions for Alzheimer’s research and a framework for generalizing the findings from this cohort to the more common sporadic form of Alzheimer’s disease. As this specific mutation is virtually 100% penetrant for the development of the disease by midlife, we use a previously defined median age of onset for mild cognitive impairment for this cohort to examine the trajectory of the biological and cognitive markers of the disease as a function of the carriers’ estimated years to clinical onset. Studies from this cohort suggest that structural and functional brain abnormalities — such as cortical thinning and hyperactivation in memory networks — as well as differences in biofluid and in vivo measurements of Alzheimer’s-related pathological proteins distinguish Presenilin1 E280A mutation carriers from non-carriers as early as childhood, or approximately three decades before the median age of onset of clinical symptoms. We conclude our review with discussion on future directions for Alzheimer’s disease research, with specific emphasis on ways to design studies that compare the generalizability of research in autosomal dominant Alzheimer’s disease to the larger sporadic Alzheimer’s disease population.

2021 ◽  
Author(s):  
Antoinette O’Connor ◽  
Josef Pannee ◽  
Teresa Poole ◽  
Charles Arber ◽  
Erik Portelius ◽  
...  

AbstractIn-vitro studies of autosomal dominant Alzheimer’s disease (ADAD) implicate longer Aβ peptides in pathogenesis, however less is known about the behaviour of ADAD mutations in-vivo. In this cross-sectional cohort study, we used liquid chromatography-tandem mass spectrometry to analyse 66 plasma samples from ADAD family members who were at-risk of inheriting a mutation or were already symptomatic. We tested for differences in plasma Aβ42:38, 38:40 and 42:40 ratios between Presenilin1 (PSEN1) and Amyloid Precursor Protein (APP) carriers. We examined the relationship between plasma and in-vitro models of Aβ processing and, among PSEN1 carriers, tested for associations with parental age at onset (AAO). 39 participants were mutation carriers (28 PSEN1 and 11 APP). Age- and sex-adjusted models showed marked differences in plasma Aβ between APP and PSEN1: higher Aβ42:38 in PSEN1 versus APP (p<0.001) and non-carriers (p<0.001); higher Aβ38:40 in APP versus PSEN1 (p<0.001) and non-carriers (p<0.001), while Aβ42:40 was higher in APP and PSEN1 compared to non-carriers (both p<0.001). Aβ profiles were reasonably consistent in plasma and cell lines. Within PSEN1, sex-adjusted models demonstrated negative associations between (i)Aβ42:40 (ii)Aβ42:38 and parental AAO. In-vivo differences in Aβ processing between APP and PSEN1 provide insights into ADAD pathophysiology which can inform therapy development.


Author(s):  
Yamile Bocanegra ◽  
Joshua T. Fox-Fuller ◽  
Ana Baena ◽  
Edmarie Guzmán-Vélez ◽  
Clara Vila-Castelar ◽  
...  

Abstract Objective: Visual memory (ViM) declines early in Alzheimer’s disease (AD). However, it is unclear whether ViM impairment is evident in the preclinical stage and relates to markers of AD pathology. We examined the relationship between ViM performance and in vivo markers of brain pathology in individuals with autosomal dominant AD (ADAD). Methods: Forty-five cognitively unimpaired individuals from a Colombian kindred with the Presenilin 1 (PSEN1) E280A ADAD mutation (19 carriers and 26 noncarriers) completed the Rey–Osterrieth Complex Figure immediate recall test, a measure of ViM. Cortical amyloid burden and regional tau deposition in the entorhinal cortex (EC) and inferior temporal cortex (IT) were measured using 11C-Pittsburgh compound B positron emission tomography (PET) and 11F-flortaucipir PET, respectively. Results: Cognitively unimpaired carriers and noncarriers did not differ on ViM performance. Compared to noncarriers, carriers had higher levels of cortical amyloid and regional tau in both the EC and IT. In cognitively unimpaired carriers, greater cortical amyloid burden, higher levels of regional tau, and greater age were associated with worse ViM performance. Only a moderate correlation between regional tau and ViM performance remained after adjusting for verbal memory scores. None of these correlations were observed in noncarriers. Conclusions: Results suggest that AD pathology and greater age are associated with worse ViM performance in ADAD before the onset of clinical symptoms. Further investigation with larger samples and longitudinal follow-up is needed to examine the utility of ViM measures for identifying individuals at high risk of developing dementia later in life.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Justin S. Sanchez ◽  
Bernard J. Hanseeuw ◽  
Francisco Lopera ◽  
Reisa A. Sperling ◽  
Ana Baena ◽  
...  

Abstract Background Neuroimaging studies of autosomal dominant Alzheimer’s disease (ADAD) enable characterization of the trajectories of cerebral amyloid-β (Aβ) and tau accumulation in the decades prior to clinical symptom onset. Longitudinal rates of regional tau accumulation measured with positron emission tomography (PET) and their relationship with other biomarker and cognitive changes remain to be fully characterized in ADAD. Methods Fourteen ADAD mutation carriers (Presenilin-1 E280A) and 15 age-matched non-carriers from the Colombian kindred underwent 2–3 sessions of Aβ (11C-Pittsburgh compound B) and tau (18F-flortaucipir) PET, structural magnetic resonance imaging, and neuropsychological evaluation over a 2–4-year follow-up period. Annualized rates of change for imaging and cognitive variables were compared between carriers and non-carriers, and relationships among baseline measurements and rates of change were assessed within carriers. Results Longitudinal measurements were consistent with a sequence of ADAD-related changes beginning with Aβ accumulation (16 years prior to expected symptom onset, EYO), followed by entorhinal cortex (EC) tau (9 EYO), neocortical tau (6 EYO), hippocampal atrophy (6 EYO), and cognitive decline (4 EYO). Rates of tau accumulation among carriers were most rapid in parietal neocortex (~ 9%/year). EC tau PET signal at baseline was a significant predictor of subsequent neocortical tau accumulation and cognitive decline within carriers. Conclusions Our results are consistent with the sequence of biological changes in ADAD implied by cross-sectional studies and highlight the importance of EC tau as an early biomarker and a potential link between Aβ burden and neocortical tau accumulation in ADAD.


2020 ◽  
Author(s):  
Martin J. Dahl ◽  
Mara Mather ◽  
Markus Werkle-Bergner ◽  
Briana L. Kennedy ◽  
Yuchuan Qiao ◽  
...  

AbstractAbnormally phosphorylated tau, an indicator of Alzheimer’s disease, begins to accumulate in the first decades of life in the locus coeruleus (LC), the primary source of cortical norepinephrine. Ensuing dysfunction in noradrenergic neuromodulation is hypothesized to contribute to Alzheimer’s progression. However, research into the role of the LC has been impeded by a lack of effective ways of assessing it in vivo. Advances in high-resolution brainstem magnetic resonance imaging (MRI) hold potential to investigate the association of locus coeruleus integrity and Alzheimer’s-related neuropathological markers in vivo.Leveraging a meta-analytical approach, we first synthesized LC localizations and dimensions across previously published studies to improve the reliability and validity of MR-based locus coeruleus detection. Next, we applied this refined volume of interest to determine whether MR-indexed LC integrity can serve as a marker for noradrenergic degeneration in early-onset Alzheimer’s disease. Eighteen participants (34.7±10.1 years; 9♀) with or known to be at-risk for mutations in genes associated with autosomal-dominant Alzheimer’s disease (ADAD) were investigated. Genotyping confirmed mutations in seven participants (PSEN1, n = 6; APP, n = 1), of which four were symptomatic. Participants underwent 3T-MRI, flortaucipir positron emission tomography (PET), and cognitive testing. LC MRI intensity, a non-invasive proxy for neuronal density, was semi-automatically extracted from high-resolution brainstem scans across the rostrocaudal extent of the nucleus.Relative to healthy controls, symptomatic participants showed lower LC intensity. This effect was pronounced in rostral segments of the nucleus that project to the mediotemporal lobe and other memory-relevant areas. Among carriers of ADAD-causing mutations, closer proximity to the mutation-specific median age of dementia diagnosis was associated with lower LC intensity. Leveraging a multivariate statistical approach, we revealed a pattern of LC-related tau pathology in occipito-temporo-parietal brain regions. Finally, higher locus intensity was closely linked to memory performance across a variety of neuropsychological tests.Our finding of diminished MR-indexed LC integrity in autosomal-dominant Alzheimer’s disease suggest a role of the noradrenergic system in this neurodegenerative disease.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Tatsuhiro Terada ◽  
Joseph Therriault ◽  
Min Su Peter Kang ◽  
Melissa Savard ◽  
Tharick Ali Pascoal ◽  
...  

Abstract Background Mitochondrial electron transport chain abnormalities have been reported in postmortem pathological specimens of Alzheimer’s disease (AD). However, it remains unclear how amyloid and tau are associated with mitochondrial dysfunction in vivo. The purpose of this study is to assess the local relationships between mitochondrial dysfunction and AD pathophysiology in mild AD using the novel mitochondrial complex I PET imaging agent [18F]BCPP-EF. Methods Thirty-two amyloid and tau positive mild stage AD dementia patients (mean age ± SD: 71.1 ± 8.3 years) underwent a series of PET measurements with [18F]BCPP-EF mitochondrial function, [11C]PBB3 for tau deposition, and [11C] PiB for amyloid deposition. Age-matched normal control subjects were also recruited. Inter and intrasubject comparisons of levels of mitochondrial complex I activity, amyloid and tau deposition were performed. Results The [18F]BCPP-EF uptake was significantly lower in the medial temporal area, highlighting the importance of the mitochondrial involvement in AD pathology. [11C]PBB3 uptake was greater in the temporo-parietal regions in AD. Region of interest analysis in the Braak stage I-II region showed significant negative correlation between [18F]BCPP-EF SUVR and [11C]PBB3 BPND (R = 0.2679, p = 0.04), but not [11C] PiB SUVR. Conclusions Our results indicated that mitochondrial complex I is closely associated with tau load evaluated by [11C]PBB3, which might suffer in the presence of its off-target binding. The absence of association between mitochondrial complex I dysfunction with amyloid load suggests that mitochondrial dysfunction in the trans-entorhinal and entorhinal region is a reflection of neuronal injury occurring in the brain of mild AD.


Sign in / Sign up

Export Citation Format

Share Document