scholarly journals Directional hyper-reduced model for evaluation of residual welding stresses in code_aster

Author(s):  
Tuan Dinh-Trong ◽  
David Ryckelynck ◽  
Mickaël Abbas ◽  
Sofiane Hendili

The welding process produces strains and residual stresses that must be taken into account to evaluate the final quality of the assembly. For that, the simulation of the process by a thermomechanical computation is very widely used. Numerical simulation uses many parameters (materials, heat source, boundary conditions) whose effects must be studied. But as the compuation becoming very expensive, massive parametric studies quickly become unusable. To reduce the computation time, we propose an approach based on the spatial and temporal similarity of thermal results, by a method of hyper-reduction on a slice of the domain.

Author(s):  
Ihab F. Z. Fanous ◽  
Maher Y. A. Younan ◽  
Abdalla S. Wifi

The structure in which the welding process is performed highly affects the residual stresses generated in the welding. This effect is simulated by choosing the appropriate boundary conditions in modeling the welding process. The major parameters of the boundary conditions are the method by which the base metal is being fixed and the amount of heat being applied through the torch. Other parameters may include the coefficients of thermal heat loss from the plate which may simulate the media in which the welding is taking place. In modeling the welding process, 2D forms of approximation were developed in analyzing most of the models of such problem. 3D models analyzing the welding process were developed in limited applications due to its high computation time and cost. With the development of new finite element tools, namely the element movement technique developed by the authors, full 3D analysis of the welding process is becoming in hand. In the present work, three different boundary conditions shall be modeled companng their effect on the welding. These boundary conditions shall be applied to two models of the welding process: one using the element birth technique and the other using the element movement technique showing the similarity in their responses verifying the effectiveness of the latter being accomplished in a shorter time.


2003 ◽  
Vol 125 (4) ◽  
pp. 432-439 ◽  
Author(s):  
Ihab F. Z. Fanous ◽  
Maher Y. A. Younan ◽  
Abdalla S. Wifi

The structure in which the welding process is performed highly affects the residual stresses generated in the welding. This effect is simulated by choosing the appropriate boundary conditions in modeling the welding process. The major parameters of the boundary conditions are the method by which the base metal is being fixed and the amount of heat being applied through the torch. Other parameters may include the coefficients of thermal heat loss from the plate which may simulate the media in which the welding is taking place. In modeling the welding process, two-dimensional forms of approximation were developed in analyzing most of the models of such problem. Three-dimensional models analyzing the welding process were developed in limited applications due to its high computation time and cost. With the development of new finite element tools, namely the element movement technique developed by the authors, full three-dimensional analysis of the welding process is becoming in hand. In the present work, three different boundary conditions shall be modeled comparing their effect on the welding. These boundary conditions shall be applied to two models of the welding process: one using the element birth technique and the other using the element movement technique showing the similarity in their responses verifying the effectiveness of the latter being accomplished in a shorter time.


2010 ◽  
Vol 118-120 ◽  
pp. 70-74
Author(s):  
Yu Liu ◽  
Jian Xin Liu ◽  
Shu Yi Yan ◽  
Zhi Min Wang ◽  
Bing Zhang

Welding process of automobile panels is a key process in the manufacturing of automobile body and its quality directly impact on the appearance and quality of automobile. The causes of dimensional deviation of welded assembly could be workpieces variation, assembly tooling variation, and welding distortion. As a major source of assembly deviation, dimensional variations of workpieces have important effects on the assembly quality of automobile body. In this paper, pre-stressing was used to reflect the workpieces’ variation and the node coupling method was used in the numerical simulation to predict the deformation of assembly caused by the welding process of automobile panels. And further the computation results were listed and compared with the measured ones.


2009 ◽  
Vol 83-86 ◽  
pp. 125-132 ◽  
Author(s):  
Sebastien Gallée ◽  
Antoine Martin ◽  
Vincent Robin ◽  
Daniel Nelias

The manufacturing of the ITER (International Thermonuclear Experimental Reactor) vacuum vessel involves the welding of thick deformed plates. The aim of this study is to investigate the influence of forming residual stresses on the welding distortions of two thick plates. The plates are deformed using a three point rolling process. A first numerical simulation is performed to investigate the residual stresses induced by this process. The forming residual stresses are taken into account as initial conditions to perform the electron beam welding simulation of a deformed plate. This simulation first requires calibrating the heat source. Two welding simulations are then performed: the first one with residual stresses and the second one without. The comparison of the simulation results points out a low effect of the residual stresses on the electron beam welding distortions. As a result, in the next electron beam welding simulations of the vacuum vessel, no forming residual stresses will be taken into account.


Author(s):  
Shivdayal Patel ◽  
B. P. Patel ◽  
Suhail Ahmad

Welding is one of the most used joining methods in the ship industry. However, residual stresses are induced in the welded joints due to the rapid heating and cooling leading to inhomogenously distributed dimensional changes and non-uniform plastic and thermal strains. A number of factors, such as welding speed, boundary conditions, weld geometry, weld thickness, welding current/voltage, number of weld passes, pre-/post-heating etc, influence the residual stress distribution. The main aim of this work is to estimate the residual stresses in welded joints through finite element analysis and to investigate the effects of boundary conditions, welding speed and plate thickness on through the thickness/surface distributions of residual stresses. The welding process is simulated using 3D Finite element model in ABAQUS FE software in two steps: 1. Transient thermal analysis and 2. Quasi-static thermo-elasto-plastic analysis. The normal residual stresses along and across the weld in the weld tow region are found to be significant with nonlinear distribution. The residual stresses increase with the increase in the thickness of the plates being welded. The nature of the normal residual stress along the weld is found to be tensile-compressive-tensile and the nature of normal residual stress across the weld is found to be tensile along the thickness direction.


2016 ◽  
Vol 1138 ◽  
pp. 49-55
Author(s):  
Marek Slováček ◽  
Josef Tejc ◽  
Mojmír Vaněk

Welding as a modern, highly efficient production technology found its position in almost all industries. At the same time the demands on the quality of the welded joints have been constantly growing in all production areas. Great demand on the quality of the welded joints consequently causes more experimental or prototype – so called – validation joints that take place before the welding of final construction. These experiments, prototypes aim at – for instance – defining the appropriate welding technology, material, pre-heating, welding parameters, clamping condition and optimizing the welding process. Naturally, these experiments and prototypes make production more expensive. Numerical simulations of welding – in the area of production preparation as well as of production proper – have been frequently used recently. Numerical simulations supported by experimental measurements can simulate the actual welding process very close to reality. The new material models for hardness and mechanical properties prediction based on numerical simulation solution will be introduced.The paper covers some typical welding cases from energy industrial sector. The homogenous and heterogeneous weld joints from modern energy Cr-Mo-Ni-V steels (including modern austenitic steels) were done as prototype welding. The numerical simulation of these weld joints including post weld heat treatment process were done and welding technologies were optimised based on the numerical simulation results. The calculated hardness was compared with real measurements. During project the complete material properties which are needed for numerical simulation were measured. Simplify numerical lifetime prediction of weld joints including results from numerical welding analyse (as residual stresses and plastic deformation) were done.


2015 ◽  
Vol 59 (03) ◽  
pp. 133-144
Author(s):  
Guangming Fu ◽  
Tetyana Gurova ◽  
Marcelo I. Lourenco ◽  
Segen F. Estefen

The article contributes, through numerical simulation based on models calibrated by experimental results, to better estimate residual stresses and distortions in welded structures representatives of ships and offshore platforms considering welding procedures relevant to shipyard current practices. A multi-pass welding is carried out to investigate the residual stresses in laboratory tests. The temperature at several positions on a plate sample is recorded with thermocouples and residual stresses are measured using an x-ray diffraction technique. Finite element (FE) models are developed in this study and experimentally validated. The three dimensional (3D) moving Goldak's double-ellipsoidal heat source model is employed in the simulations. A Levenberg-Marquardt neural network algorithm is employed to determine the geometric parameters of the heat source model. The technique based on neural network is applied to dimension the heat source later employed in the thermal analysis using 2D FE model to reduce the computer time of the numerical simulation and to make it feasible for shipbuilding industry applications. The numerical results of temperature and residual stress distribution are correlated with the experimental measurements. Finally, the effects of preheat and interpass temperatures on the residual stresses are investigated using numerical simulation. The effects of the transient releasing temperature on the residual stresses are also discussed.


2021 ◽  
Vol 95 ◽  
pp. 2-10
Author(s):  
Manh Ngo Huu ◽  

Orbital - TIG (OT) auto welding process was applied for the weld connection of the fixed pipe lines. The heat distribution of the OT welding has influenced phase transformation and quality of the weld. In this paper, the temperature fields and phase transformation of 316L stainless steel pipes have been simulated during OT auto welding process. The numerical simulation has been used and supported by the JMATPRO 7.0 and SYSWELD softwares.


Sign in / Sign up

Export Citation Format

Share Document