Study of the Effect of Boundary Conditions on Residual Stresses in Welding Using Element Birth and Element Movement Techniques

Author(s):  
Ihab F. Z. Fanous ◽  
Maher Y. A. Younan ◽  
Abdalla S. Wifi

The structure in which the welding process is performed highly affects the residual stresses generated in the welding. This effect is simulated by choosing the appropriate boundary conditions in modeling the welding process. The major parameters of the boundary conditions are the method by which the base metal is being fixed and the amount of heat being applied through the torch. Other parameters may include the coefficients of thermal heat loss from the plate which may simulate the media in which the welding is taking place. In modeling the welding process, 2D forms of approximation were developed in analyzing most of the models of such problem. 3D models analyzing the welding process were developed in limited applications due to its high computation time and cost. With the development of new finite element tools, namely the element movement technique developed by the authors, full 3D analysis of the welding process is becoming in hand. In the present work, three different boundary conditions shall be modeled companng their effect on the welding. These boundary conditions shall be applied to two models of the welding process: one using the element birth technique and the other using the element movement technique showing the similarity in their responses verifying the effectiveness of the latter being accomplished in a shorter time.

2003 ◽  
Vol 125 (4) ◽  
pp. 432-439 ◽  
Author(s):  
Ihab F. Z. Fanous ◽  
Maher Y. A. Younan ◽  
Abdalla S. Wifi

The structure in which the welding process is performed highly affects the residual stresses generated in the welding. This effect is simulated by choosing the appropriate boundary conditions in modeling the welding process. The major parameters of the boundary conditions are the method by which the base metal is being fixed and the amount of heat being applied through the torch. Other parameters may include the coefficients of thermal heat loss from the plate which may simulate the media in which the welding is taking place. In modeling the welding process, two-dimensional forms of approximation were developed in analyzing most of the models of such problem. Three-dimensional models analyzing the welding process were developed in limited applications due to its high computation time and cost. With the development of new finite element tools, namely the element movement technique developed by the authors, full three-dimensional analysis of the welding process is becoming in hand. In the present work, three different boundary conditions shall be modeled comparing their effect on the welding. These boundary conditions shall be applied to two models of the welding process: one using the element birth technique and the other using the element movement technique showing the similarity in their responses verifying the effectiveness of the latter being accomplished in a shorter time.


Author(s):  
Shivdayal Patel ◽  
B. P. Patel ◽  
Suhail Ahmad

Welding is one of the most used joining methods in the ship industry. However, residual stresses are induced in the welded joints due to the rapid heating and cooling leading to inhomogenously distributed dimensional changes and non-uniform plastic and thermal strains. A number of factors, such as welding speed, boundary conditions, weld geometry, weld thickness, welding current/voltage, number of weld passes, pre-/post-heating etc, influence the residual stress distribution. The main aim of this work is to estimate the residual stresses in welded joints through finite element analysis and to investigate the effects of boundary conditions, welding speed and plate thickness on through the thickness/surface distributions of residual stresses. The welding process is simulated using 3D Finite element model in ABAQUS FE software in two steps: 1. Transient thermal analysis and 2. Quasi-static thermo-elasto-plastic analysis. The normal residual stresses along and across the weld in the weld tow region are found to be significant with nonlinear distribution. The residual stresses increase with the increase in the thickness of the plates being welded. The nature of the normal residual stress along the weld is found to be tensile-compressive-tensile and the nature of normal residual stress across the weld is found to be tensile along the thickness direction.


Author(s):  
Ihab F. Z. Fanous ◽  
Maher Y. A. Younan ◽  
Abdalla S. Wifi

The modeling and simulation of the welding process has been of main concern for different fields of applications. Most of the modeling of such a problem has been mainly in 2D forms that may also include many sorts of approximation and assumptions. This is due to limitations in the computational facilities as the analysis of 3D problems consumes a lot of time. With the evolution of new finite element tools and fast computer systems, the analysis of such problems is becoming in hand. In this research, a simulation of the welding process with and without metal deposition is developed. Change of phase and variation of properties with temperature are taken into account. A new technique for metal deposition using element movement is introduced. It helps in performing full 3D analysis in a shorter time than other previously developed techniques such as the element birth.


Author(s):  
Tomas Nicak ◽  
Matthias Hu¨mmer ◽  
Elisabeth Keim

The numerical welding simulation has developed very rapidly during the last few years. The problem complexity has increased from simple 2D axis-symmetric or cross-section models to full 3D models, which can describe the entire welding process more realistically — including start-stop effects. As recent research projects indicate, a quantitative assessment of the residual stresses magnitude by means of a 3D analysis is possible. Moreover, the structure integrity with respect to fatigue, fracture or Stress Corrosion Cracking (SCC) processes can be evaluated based on the welding simulation results superimposed with the operating load (or any arbitrary disturbance transient load). This makes a more accurate life time prediction of the welded components possible. Furthermore, in order to minimize the residual stresses in components, a parametric study can be performed considering important input data like heat input or bead sequencing. It would make the development of virtual welding procedures possible, which can essentially help to cut the design and operating costs. In this paper a full 3D numerical welding simulation for a man-hole drainage nozzle in a steam generator will be presented. Two design options are considered. The residual stresses are calculated by means of an uncoupled transient thermal and mechanical FE analysis using the ABAQUS code. The paper will present a robust procedure allowing reasonable predictions of the residual stresses for complex structures in industrial practice.


Author(s):  
Tuan Dinh-Trong ◽  
David Ryckelynck ◽  
Mickaël Abbas ◽  
Sofiane Hendili

The welding process produces strains and residual stresses that must be taken into account to evaluate the final quality of the assembly. For that, the simulation of the process by a thermomechanical computation is very widely used. Numerical simulation uses many parameters (materials, heat source, boundary conditions) whose effects must be studied. But as the compuation becoming very expensive, massive parametric studies quickly become unusable. To reduce the computation time, we propose an approach based on the spatial and temporal similarity of thermal results, by a method of hyper-reduction on a slice of the domain.


Author(s):  
Muhammad Zain-ul-abdein ◽  
Daniel Ne´lias ◽  
Jean-Franc¸ois Jullien ◽  
Dominique Deloison

Laser beam welding has found its application in the aircraft industry for the fabrication of fuselage panels in a T-joint configuration. However, the inconveniences like distortions and residual stresses are inevitable consequences of welding. The effort is made in this work to experimentally measure and numerically simulate the distortions induced by laser beam welding of a T-joint with industrially used thermal and mechanical boundary conditions on the thin sheets of aluminium 6056-T4. Several small scale experiments were carried out with various instrumentations to establish a database necessary to verify the simulation results. Finite element (FE) simulation is performed with Abaqus and the conical heat source is programmed in FORTRAN. Heat transfer analysis is performed to achieve the required weld pool geometry and temperature fields. Mechanical analysis is then performed with industrial loading and boundary conditions so as to predict the distortion and the residual stress pattern. A good agreement is found amongst the experimental and simulation results.


2011 ◽  
Vol 52-54 ◽  
pp. 511-516 ◽  
Author(s):  
Arup Kumar Borah

In this paper we have studied the streamfunction-vorticity formulation can be advantageously used to analyse steady as well as unsteady incompressible flow and heat transfer problems, since it allows the elimination of pressure from the governing equations and automatically satisfies the continuity constraint. On the other hand, the specification of boundary conditions for the streamfunction-vorticity is not easy and a poor evaluation of these conditions may lead to serious difficulties in obtaining a converged solution. The main issue addressed in this paper is the specification in the boundary conditions in the context of finite element of discretization, but approach utilized can be easily extended to finite volume computations.


2012 ◽  
Vol 184-185 ◽  
pp. 649-652
Author(s):  
Gui Fang Guo ◽  
Shi Qiong Zhou ◽  
Liang Wang ◽  
Li Hao ◽  
Ze Guo Liu

The effects of electron beam welding on the residual stresses of welded joints of pure aluminum plate 99.60 are studied by through-hole-drilling and blind-hole-drilling method. Meanwhile, based on the thermal elastic-plastic theory, and making use of ANSYS finite element procedure, a three - dimensional finite element model using mobile heat source of temperature and stresses field of electron beam welding in pure aluminum is established. The welding process is simulated by means of the ANSYS software. The results show that the main residual stress is the longitudinal residual stress, the value of the longitudinal residual stress is much larger than the transverse residual stress. But the residual stress in the thickness is rather small. And in the weld center, the maximum value of residual stresses is lower than its yield strength. The simulation results about the welded residual stresses are almost identical with the experimental results by measuring. So the research result is important to science research and engineering application.


1990 ◽  
Vol 17 (5) ◽  
pp. 835-843 ◽  
Author(s):  
H. Marzouk ◽  
S. Mohan

The present work deals with formulation of theoretical and analytical methods leading to the development of column strength curves. The formulations were developed for both elastic and inelastic behaviour. Two types of reinforcement have been developed for strengthening the W-shape columns under load. Since the column strength curves are based in part on the magnitude and distribution of residual stresses, it is extremely important to consider the new pattern of residual stresses due to welding process. Also, the welding sequence will affect the magnitude and distribution of residual stresses. Theoretical formulations leading to a closed-form solution for the prediction of critical load were developed for two types of strengthening using the superposition of original residual, new welding, and initial loading stresses. A nonlinear finite element analysis based on the large deformation theory of stability was used to predict the strengthened column critical load. It takes into consideration the effect of cooling residual stresses and new welding residual stresses. The formulations were incorporated with gradual penetration of yielding, the spreading of inelastic zones along the member length, the presence of residual stresses, and strain hardening of the material. Experiments were carried out to determine the actual capacity of strengthened columns. Seven specimens were tested using two and four strengthening plates. The welding stresses were measured through a series of experiments, and it was found that the parabolic distribution is a very close approximation to the actual new welding stress distribution. Key words: reinforcement of steel columns, welding stresses, welding sequence, strengthening of existing structures, buckling, steel plating, finite element.


2013 ◽  
Vol 758 ◽  
pp. 1-10
Author(s):  
Fabiano Rezende ◽  
Luís Felipe Guimarães de Souza ◽  
Pedro Manuel Calas Lopes Pacheco

Welding is a complex process where localized and intensive heat is imposed to a piece promoting mechanical and metallurgical changes. Phenomenological aspects of welding process involve couplings among different physical processes and its description is unusually complex. Basically, three couplings are essential: thermal, phase transformation and mechanical phenomena. Welding processes can generate residual stress due to the thermal gradient imposed to the workpiece in association to geometric restrictions. The presence of tensile residual stresses can be especially dangerous to mechanical components submitted to fatigue loadings. The present work regards on study the residual stress in welded superduplex stainless steel pipes using experimental and a numerical analysis. A parametric nonlinear elastoplastic model based on finite element method is used for the evaluation of residual stress in superduplex steel welding. The developed model takes into account the coupling between mechanical and thermal fields and the temperature dependency of the thermomechanical properties. Thermocouples are used to measure the temperature evolution during welding stages. Instrumented hole drilling technique is used for the evaluation of the residual stress after welding process. Experimental data is used to calibrate the numerical model. The methodology is applied to evaluate the behavior of two-pass girth welding (TIG for root pass and SMAW for finishing) in 4 inch diameter seamless tubes of superduplex stainless steel UNS32750. The result shows a good agreement between numerical experimental results. The proposed methodology can be used in complex geometries as a powerful tool to study and adjust welding parameters to minimize the residual stresses on welded mechanical components.


Sign in / Sign up

Export Citation Format

Share Document