scholarly journals Adaptive POD-DEIM model reduction based on an improved error estimator

Author(s):  
Sridhar Chellappa ◽  
Lihong Feng ◽  
Peter Benner

For reliable, efficient, rapid simulations of dynamical systems, a reduced order model (ROM) with certified accuracy is highly desirable. The ROM is derived from a full order model (FOM) through model reduction. In this work, we propose an adaptive approach for nonlinear model reduction by making use of a suitable output error estimator, thus enable the generation of a compact ROM, with appropriate balance between the state and nonlinear approximations.

2012 ◽  
Vol 6-7 ◽  
pp. 135-142
Author(s):  
Xue Song Han ◽  
Yu Bo Duan

This paper extends the results obtained for one-dimensional Markovian jump systems to investigate the problem of H∞model reduction for a class of linear discrete time 2D Markovian jump systems with state delays in Roesser model which is time-varying and mode-independent. The reduced-order model with the same randomly jumping parameters is proposed which can make the error systems stochastically stable with a prescribed H∞ performance. A sufficient condition in terms of linear matrix inequalitiesSubscript text(LMIs) plus matrix inverse constraints are derived for the existence of a solution to the reduced-order model problems. The cone complimentarity linearization (CCL) method is exploited to cast them into nonlinear minimization problems subject to LMI constraints. A numerical example is given to illustrate the design procedures.


2021 ◽  
Vol 11 (20) ◽  
pp. 9435
Author(s):  
Ning Wang ◽  
Jiajia Chen ◽  
Huifang Wang ◽  
Shiyou Yang

In simulations of three-dimensional transient physics filled through a numerical approach, the order of the equation set of high-fidelity models is extremely high. To eliminate the large dimension of equations, a model order reduction (MOR) technique is introduced. In the existing MOR methods, the block Arnoldi algorithm-based MOR method is numerically stable, achieving a passively reduced order model. Nevertheless, this method performs poorly when it is applied to very wide-frequency transients. To eliminate this deficiency, multipoint MOR methods are emerging. However, it is hard to directly apply an existing multipoint MOR method to a 3-D transient field equation set. The implementation issues in a reduction process (such as the selection of expansion points, the number of moments matched at a point and the error bound) have not been explored in detail. In this respect, an adaptive multipoint model reduction model based on the Arnoldi algorithm is proposed to obtain the reduced-order models of a 3-D temperature field. The originality of this study is the proposal of a novel adaptive algorithm for selecting expansion points, matching moments automatically, using a posterior-error estimator based on temperature response coupled with a network topological method (NTM). The computational efficiency and accuracy of the proposed method are evaluated by the numerical results from solving the temperature field of a prototype insulated-gate bipolar transistor (IGBT).


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 863
Author(s):  
Neveen Ali Eshtewy ◽  
Lena Scholz

High dimensionality continues to be a challenge in computational systems biology. The kinetic models of many phenomena of interest are high-dimensional and complex, resulting in large computational effort in the simulation. Model order reduction (MOR) is a mathematical technique that is used to reduce the computational complexity of high-dimensional systems by approximation with lower dimensional systems, while retaining the important information and properties of the full order system. Proper orthogonal decomposition (POD) is a method based on Galerkin projection that can be used for reducing the model order. POD is considered an optimal linear approach since it obtains the minimum squared distance between the original model and its reduced representation. However, POD may represent a restriction for nonlinear systems. By applying the POD method for nonlinear systems, the complexity to solve the nonlinear term still remains that of the full order model. To overcome the complexity for nonlinear terms in the dynamical system, an approach called the discrete empirical interpolation method (DEIM) can be used. In this paper, we discuss model reduction by POD and DEIM to reduce the order of kinetic models of biological systems and illustrate the approaches on some examples. Additional computational costs for setting up the reduced order system pay off for large-scale systems. In general, a reduced model should not be expected to yield good approximations if different initial conditions are used from that used to produce the reduced order model. We used the POD method of a kinetic model with different initial conditions to compute the reduced model. This reduced order model is able to predict the full order model for a variety of different initial conditions.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Franck Nguyen ◽  
Selim M. Barhli ◽  
Daniel Pino Muñoz ◽  
David Ryckelynck

In this paper, computer vision enables recommending a reduced order model for fast stress prediction according to various possible loading environments. This approach is applied on a macroscopic part by using a digital image of a mechanical test. We propose a hybrid approach that simultaneously exploits a data-driven model and a physics-based model, in mechanics of materials. During a machine learning stage, a classification of possible reduced order models is obtained through a clustering of loading environments by using simulation data. The recognition of the suitable reduced order model is performed via a convolutional neural network (CNN) applied to a digital image of the mechanical test. The CNN recommend a convenient mechanical model available in a dictionary of reduced order models. The output of the convolutional neural network being a model, an error estimator, is proposed to assess the accuracy of this output. This article details simple algorithmic choices that allowed a realistic mechanical modeling via computer vision.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1690
Author(s):  
Youngkyu Kim ◽  
Karen Wang ◽  
Youngsoo Choi

A classical reduced order model (ROM) for dynamical problems typically involves only the spatial reduction of a given problem. Recently, a novel space–time ROM for linear dynamical problems has been developed [Choi et al., Space–tume reduced order model for large-scale linear dynamical systems with application to Boltzmann transport problems, Journal of Computational Physics, 2020], which further reduces the problem size by introducing a temporal reduction in addition to a spatial reduction without much loss in accuracy. The authors show an order of a thousand speed-up with a relative error of less than 10−5 for a large-scale Boltzmann transport problem. In this work, we present for the first time the derivation of the space–time least-squares Petrov–Galerkin (LSPG) projection for linear dynamical systems and its corresponding block structures. Utilizing these block structures, we demonstrate the ease of construction of the space–time ROM method with two model problems: 2D diffusion and 2D convection diffusion, with and without a linear source term. For each problem, we demonstrate the entire process of generating the full order model (FOM) data, constructing the space–time ROM, and predicting the reduced-order solutions, all in less than 120 lines of Python code. We compare our LSPG method with the traditional Galerkin method and show that the space–time ROMs can achieve O(10−3) to O(10−4) relative errors for these problems. Depending on parameter–separability, online speed-ups may or may not be achieved. For the FOMs with parameter–separability, the space–time ROMs can achieve O(10) online speed-ups. Finally, we present an error analysis for the space–time LSPG projection and derive an error bound, which shows an improvement compared to traditional spatial Galerkin ROM methods.


Author(s):  
Hadrien Tournaire ◽  
Franck Renaud ◽  
Jean-Luc Dion

In order to perform faster simulations, the model reduction is nowadays used in industrial contexts to solve large and complex problems. However, the efficiency of such an approach is sometimes cut by the interface size of the reduced model and its reusability. In this article, we focus on the development of a reduction methodology for the build of modal analysis oriented and updatable reduced order model whose size is not linked to their contacting interface. In order to allow latter model readjusting, we impose the use of eigenmodes in the reduction basis. Eventually, the method introduced is coupled to an Arnoldi based enrichment algorithm in order to improve the accuracy of the reduced model produced. In the last section the proposed methodology is discussed and compared to the Craig and Bampton reduction method. During this comparison we observed that even when not enriched, our work enables us to recover the Craig and Bampton accuracy with partially updatable and smaller reduced order model.


Sign in / Sign up

Export Citation Format

Share Document