scholarly journals LHC, Astrophysics and Cosmology

2014 ◽  
Vol 1 (1) ◽  
pp. 42-48
Author(s):  
Giulio Auriemma

In this paper we discuss the impact on cosmology of recent results obtained by the LHC (Large Hadron Collider) experiments in the 2011-2012 runs, respectively at √<span style="text-decoration: overline;">s</span> = 7 and 8 TeV. The capital achievement of LHC in this period has been the discovery of a spin-0 particle with mass 126 GeV/c<sup>2</sup>, very similar to the Higgs boson of the Standard Model of Particle Physics. Less exciting, but not less important, negative results of searches for Supersymmetric particles or other exotica in direct production or rare decays are discussed in connection with particles and V.H.E. astronomy searches for Dark Matter.

2015 ◽  
Vol 23 (1) ◽  
pp. 57-70
Author(s):  
Aleandro Nisati

The Large Hadron Collider (LHC) at CERN is the highest energy machine for particle physics research ever built. In the years 2010–2012 this accelerator has collided protons to a centre-mass-energy up to 8 TeV (note that 1 TeV corresponds to the energy of about 1000 protons at rest; the mass of one proton is about 1.67×10–24 g). The events delivered by the LHC have been collected and analysed by four apparatuses placed alongside this machine. The search for the Higgs boson predicted by the Standard Model and the search for new particles and fields beyond this theory represent the most important points of the scientific programme of the LHC. In July 2012, the international collaborations ATLAS and CMS, consisting of more than 3000 physicists, announced the discovery of a new neutral particle with a mass of about 125 GeV, whose physics properties are compatible, within present experimental and theoretical uncertainties, to the Higgs boson predicted by the Standard Model. This discovery represents a major milestone for particle physics, since it indicates that the hypothesized Higgs mechanism seems to be responsible for the masses of elementary particles, in particular W± and Z0 bosons, as well as fermions (leptons and quarks). The 2013 Physics Nobel Prize has been assigned to F. Englert and P. Higgs, ‘for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider’.


Author(s):  
John Ellis

The Standard Model of particle physics agrees very well with experiment, but many important questions remain unanswered, among them are the following. What is the origin of particle masses and are they due to a Higgs boson? How does one understand the number of species of matter particles and how do they mix? What is the origin of the difference between matter and antimatter, and is it related to the origin of the matter in the Universe? What is the nature of the astrophysical dark matter? How does one unify the fundamental interactions? How does one quantize gravity? In this article, I introduce these questions and discuss how they may be addressed by experiments at the Large Hadron Collider, with particular attention to the search for the Higgs boson and supersymmetry.


Author(s):  
G. Dissertori

Enormous efforts at accelerators and experiments all around the world have gone into the search for the long-sought Higgs boson, postulated almost five decades ago. This search has culminated in the discovery of a Higgs-like particle by the ATLAS and CMS experiments at CERN's Large Hadron Collider in 2012. Instead of describing this widely celebrated discovery, in this article I will rather focus on earlier attempts to discover the Higgs boson, or to constrain the range of possible masses by interpreting precise data in the context of the Standard Model of particle physics. In particular, I will focus on the experimental efforts carried out during the last two decades, at the Large Electron Positron collider, CERN, Geneva, Switzerland, and the Tevatron collider, Fermilab, near Chicago, IL, USA.


2013 ◽  
Vol 22 (07) ◽  
pp. 1330015
Author(s):  
◽  
DOMIZIA ORESTANO

This document presents a brief overview of some of the experimental techniques employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC) in the search for the Higgs boson predicted by the standard model (SM) of particle physics. The data and the statistical analyses that allowed in July 2012, only few days before this presentation at the Marcel Grossman Meeting, to firmly establish the observation of a new particle are described. The additional studies needed to check the consistency between the newly discovered particle and the Higgs boson are also discussed.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2406
Author(s):  
Spyros Argyropoulos ◽  
Oleg Brandt ◽  
Ulrich Haisch

Despite the fact that dark matter constitutes one of the cornerstones of the standard cosmological paradigm, its existence has so far only been inferred from astronomical observations, and its microscopic nature remains elusive. Theoretical arguments suggest that dark matter might be connected to the symmetry-breaking mechanism of the electroweak interactions or of other symmetries extending the Standard Model of particle physics. The resulting Higgs bosons, including the 125 GeV spin-0 particle discovered recently at the Large Hadron Collider, therefore represent a unique tool to search for dark matter candidates at collider experiments. This article reviews some of the relevant theoretical models as well as the results from the searches for dark matter in signatures that involve a Higgs-like particle at the Large Hadron Collider.


2018 ◽  
Vol 68 (1) ◽  
pp. 429-459 ◽  
Author(s):  
Antonio Boveia ◽  
Caterina Doglioni

Colliders, among the most successful tools of particle physics, have revealed much about matter. This review describes how colliders contribute to the search for particle dark matter, focusing on the highest-energy collider currently in operation, the Large Hadron Collider (LHC) at CERN. In the absence of hints about the character of interactions between dark matter and standard matter, this review emphasizes what could be observed in the near future, presents the main experimental challenges, and discusses how collider searches fit into the broader field of dark matter searches. Finally, it highlights a few areas to watch for the future LHC program.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Isabell Engeln ◽  
Pedro Ferreira ◽  
M. Margarete Mühlleitner ◽  
Rui Santos ◽  
Jonas Wittbrodt

Abstract We discuss the dark phases of the Next-to-2-Higgs Doublet model. The model is an extension of the Standard Model with an extra doublet and an extra singlet that has four distinct CP-conserving phases, three of which provide dark matter candidates. We discuss in detail the vacuum structure of the different phases and the issue of stability at tree-level of each phase. Taking into account the most relevant experimental and theoretical constraints, we found that there are combinations of measurements at the Large Hadron Collider that could single out a specific phase. The measurement of h125 → γγ together with the discovery of a new scalar with specific rates to τ+τ− or γγ could exclude some phases and point to a specific phase.


2013 ◽  
Vol 53 (A) ◽  
pp. 528-533
Author(s):  
Giulio Auriemma

The most interesting cosmological open problems, baryon asymmetry, dark matter, inflation and dark energy, are not explained by the standard model of particle physics (SM). The final<br />goal of the Large Hadron Collider an experimental verification of the SM in the Higgs sector, and also a search for evidence of new physics beyond it. In this paper we will report some of the results obtained in 2010 and 2011, from the LHCb experiment dedicated to the study of CP violations and rare decays of heavy quarks.


2016 ◽  
Vol 79 (3) ◽  
pp. 433-443
Author(s):  
A. A. Artamonov ◽  
V. S. Epshteyn ◽  
V. B. Gavrilov ◽  
A. A. Gavrilyuk ◽  
P. A. Gorbounov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document