scholarly journals FIELD MEASUREMENT AND NUMERICAL STUDY OF EXTERNAL WIND PRESSURE OF RIBBED COOLING TOWER

2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Zi-hou Yuan ◽  
Ming-xiang ◽  
Yi-chen

The hyperbolic thin-shell cooling tower is a typical wind-sensitive structure. The full-size measurement is the most direct and important way to study the distribution of wind pressure on the surface of the cooling tower. Due to the limitations of engineering conditions and meteorological conditions, the field measured data are relatively lacking, and the field test data of ribbed cooling towers are less. In order to analyze the wind pressure distribution on the surface of the cooling tower, we chose a ribbed cooling tower in Toksun County, Xinjiang, China, where there are strong winds all year round, and field measurements were carried out to understand the wind load characteristics of the tower under the perennial dominant wind direction and the maximum wind direction. It was found that the absolute value of the negative pressure on the leeward side was larger than that in the code and the fluctuating wind pressure coefficient fluctuates greatly when the field measured wind speed was greater than 10m/s (15 meters above the ground). For circular section cooling tower, the Reynolds number (Re) has great influence on wind pressure. With the increase of Re, the absolute value of the average negative pressure of the tail wind pressure coefficient increases, which should be paid attention to in design. The regression curves of the average wind pressure coefficients measured on site under several typical working conditions are given by using the least square method, and its form is consistent with the standard (but the coefficients are different). In addition, Fluent software was used to calculate the external wind pressure of the cooling tower, and the field measured results were compared with the Chinese code, German code and numerical calculation, and the results were consistent.

2021 ◽  
Vol 13 (9) ◽  
pp. 5206
Author(s):  
Jangyoul You ◽  
Changhee Lee

Owing to strong winds during the typhoon season, damage to pilotis in the form of dropout of the exterior materials occurs frequently. Pilotis placed at the end exhibit a large peak wind pressure coefficient of the ceiling. In this study, the experimental wind direction angle of wind pressure tests was conducted in seven directions, with wind test angles varying from 0° to 90° at intervals of 15°, centered on the piloti position, which was accomplished using the wind tunnel experimental system. Regardless of the height of the building, the maximum peak wind pressure coefficient was observed at the center of the piloti, whereas the minimum peak wind pressure coefficient was noted at the corners, which corresponds with the wind direction inside the piloti. The distribution of the peak wind pressure coefficient was similar for both suburban and urban environments. However, in urban areas, the maximum peak wind pressure coefficient was approximately 1.4–1.7 times greater than that in suburban areas. The maximum peak wind pressure coefficient of the piloti ceiling was observed at the inside corner, whereas the minimum peak wind pressure coefficient was noted at the outer edge of the ceiling. As the height of the building increased, the maximum peak wind pressure coefficient decreased. Suburban and urban areas exhibited similar peak wind pressure distributions; however, the maximum peak wind pressure coefficient in urban areas was approximately 1.2–1.5 times larger than that in suburban areas.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Danyu Li ◽  
Bin Liu ◽  
Yongfeng Cheng

Damage of the cladding structures usually occurs from the wind-sensitive part, which can cause the damaged conditions to obviously vary from different areas especially on a large roof surface. It is necessary to design optimization due to the difference of wind loads by defining more accurate wind pressure coefficient (WPC) zones according to the wind vulnerability analysis. The existing wind pressure coefficient zoning methods (WPCZM) have successfully been used to characterize the simple roof shapes. But the solutions for the complex and irregular roof shapes generally rely on the empirical judgment which is defective to the wind loading analysis. In this study, a classification concept for WPC values on the roof surface is presented based on the unsupervised learning algorithm, which is not limited by the roof geometry and can realize the multitype WPC zoning more accurately. As a typical unsupervised learning algorithm, an improved K-means clustering is proposed to develop a new WPCZM to verify the above concept. And a method to determine the optimal K-value is presented by using the K-means clustering test and clustering validity indices to overcome the difficulty of obtaining the cluster number in the traditional methods. As an example, the most unfavorable pressure and suction WPC zones are studied on a flat roof structure with single wind direction and full wind direction based on the data obtained from the wind tunnel test. As another example, the mean pressure coefficient zones are studied on a saddle roof structure under 0- and 45-degree wind direction based on the data obtained by the wind tunnel test. And the proposed WPCZM is illustrated and verified.


2013 ◽  
Vol 23 (5) ◽  
pp. 622-628 ◽  
Author(s):  
Zai Q. Yang ◽  
Yong X. Li ◽  
Xiao P. Xue ◽  
Chuan R. Huang ◽  
Bo Zhang

Wind tunnel tests were conducted in an NH-2-type wind tunnel to investigate the wind pressure coefficients and their distribution on the surfaces of a single-span plastic greenhouse and a solar greenhouse. Wind pressures at numerous points on the surfaces of the greenhouse models were simultaneously measured for various wind directions. The critical wind speeds, at which damage occurred on the surfaces of single-span plastic greenhouses and solar greenhouses, were derived. To clearly describe the wind pressure distribution on various surface zones of the greenhouses, the end surface and top surface of the plastic greenhouse and the transparent surface of the solar greenhouse were divided into nine zones, which were denoted as Zone I to Zone IX. The results were as follows: 1) At wind direction angles of 0° and 45°, the end surface of the single-span plastic greenhouse was on the windward side, and the maximum positive wind pressure coefficient was near 1. At wind direction angles of 90° and 180°, the entire end surface of the single-span plastic greenhouse was on the leeward side, and the maximum negative wind pressure coefficient was near −1. The maximum positive wind pressure on the end surface of the single-span plastic greenhouse appeared in Zone IV at a wind direction angle of 15°, whereas the maximum negative pressure appeared in Zone VIII at a wind direction angle of 105°. 2) Most of the wind pressure coefficients on the top surface of the plastic greenhouse were negative. The maximum positive and negative wind pressure coefficient on the top surface of the plastic greenhouse occurred in Zones I and II, respectively, at a wind direction angle of 60°. 3) At a wind direction angle of 0°, the distribution of wind pressure coefficient contours was steady in the middle and lower zones of the transparent surface of the solar greenhouse, and the wind pressure coefficients were positive. At a wind direction angle of 90°, the wind pressure coefficients were negative on the transparent surface of the solar greenhouse. A maximum positive wind pressure coefficient was attained at a wind direction angle of 30° in Zone IX, whereas the maximum suction force occurred in Zone VII at a wind direction angle of 135°. 4) The minimum critical wind speeds required to impair the single-span plastic greenhouse and solar greenhouse were 14.5 and 18.9 m·s−1, respectively.


2013 ◽  
Author(s):  
Robel Kiflemariam ◽  
Cheng-Xian Lin

Mean wind pressure coefficient (Cp) is one of the major input data for natural ventilation study using building energy simulation approach. Due to their importance, they need to be accurately determined. In current engineering practice, tables and analytical Cp models only give mostly averaged results for simpler models and configurations. Considering the limitation of tables and analytical models, Computational Fluid Dynamics (CFD) could provide a means for an accurate and detailed assessment of Cp. In this paper, we make use of a relatively high resolution, detailed experiments done at Florida Intentional University to validate a CFD modeling of the pressure coefficients Cp. The results show that existing CFD model has a good agreement with experimental results and gives important information of distribution of Cp values over the surface. The local values of the Cp are investigated. In addition, the CFD derived Cp and discharge coefficient (Cd) values are utilized in semi-analytical ventilation models in order to get a more accurate value of ventilation rates.


2012 ◽  
Vol 166-169 ◽  
pp. 19-24
Author(s):  
Fang Hui Li ◽  
Ming Gu ◽  
Zhen Hua Ni ◽  
Shi Zhao Shen

The wind tunnel tests of some typical large roofs, including a saddle roof, pitched roof and domes, are carried out with various terrains which cover suburban and urban exposures. The wind pressure data of roofs are obtained by using the synchronous multi-pressure scanning technique. The wind pressure coefficient and local shape factors of the wind load was investigated. The effects of various terrains on wind pressures of roofs are discussed. From the results, we can see mean pressures of these roofs exposed to the mean pressures exposed to the suburban terrain are 2 or 3 times those exposed to the urban terrain. And the terrains are no directly influence to the wind pressure shape factors.


Sign in / Sign up

Export Citation Format

Share Document