scholarly journals Predictive Control of Induction Motor Drive Using dSPACE Platform

2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Pavel Karlovský ◽  
Jiří Lettl

<span lang="EN-US">Recently, the induction motor drives have become very popular in the area of controlled drives. Nowadays, a great effort is put on increasing their efficiency. The most widely used control method is the direct torque control (DTC). However, this method suffers from the torque ripple and current waveform distortion. The modification using predictive algorithms is becoming a popular approach. This paper presents a predictive control on the dSPACE DS1103 system and compares the method with DTC.</span>

2015 ◽  
Vol 9 (1) ◽  
pp. 600-609
Author(s):  
Xuande Ji ◽  
Daqing He ◽  
Yunwang Ge

For disadvantages of the large flux and torque ripple and current waveform distortion of Direct Torque Control (BASIC-DTC), the DTC scheme for induction motor based on torque angle closed-loop control was presented and the proposed scheme was realized with three methods of torque angle closed-loop control. The main characteristics of three methods of torque angle closed-loop control for the proposed scheme was analyzed, emphasizing their advantages and disadvantages. The performance of three methods of torque angle closed-loop control for the proposed scheme was studied in terms of flux and torque ripple, current waveform distortion and transient responses. Simulation results showed that the proposed scheme improves the performance of induction motor BASIC-DTC by combining low flux ripple, low torque ripple and low current waveform distortion’s characteristics with fast dynamics.


In these days, developments in the area of Induction Motor control is increasing significantly. Considerable advancements have been taken place in the area of Direct Torque Control (DTC), which is capable of providing quick dynamic response with respect to torque and flux. This paper presents a detailed survey on various latest techniques of DTC control of Induction Motor such as DTC-SVM with hysteresis band, DTCSVM with Model Predictive Control, DTC with sliding mode control, DTC with Model reference adaptive system (MRAS) et cetera. The simulation results are discussed for DTC-SVPWM topology and results obtained proves that this method has reduced torque ripple


Author(s):  
Huzainirah Ismail ◽  
Fazlli Patkar ◽  
Auzani Jidin ◽  
Aiman Zakwan Jidin ◽  
Noor Azida Noor Azlan ◽  
...  

<p>Direct Torque Control (DTC) is widely applied for ac motor drives as it offers high performance torque control with a simple control strategy. However, conventional DTC poses some disadvantages especially in term of variable switching frequency and large torque ripple due to the utilization of torque hysteresis controller. Other than that, performance of conventional DTC fed by two-level inverter is also restricted by the limited numbers of voltage vectors which lead to inappropriate selection of voltage vectors for different speed operations. This research aims to propose a Constant Switching Frequency (CSF) torque controller for DTC of induction motor (IM) fed by three-level Neutral-Point Clamped (NPC) inverter. The proposed torque controller utilizes PI controller which apply different gain for different speed operation. Besides, the utilization of NPC inverter provides greater number of voltage vectors which allow appropriate selection of voltage vectors for different operating condition. Using the proposed method, the improvement of DTC drives in term of producing a constant switching operation and minimizing torque ripple are achieved and validated via experimental results.</p>


Sign in / Sign up

Export Citation Format

Share Document