scholarly journals Non-Destructive Evaluation of Composite Helmets Using IR Thermography and Ultrasonic Excitation

2021 ◽  
Vol 25 (4) ◽  
pp. 89-92
Author(s):  
Waldemar Świderski ◽  
Monika Pracht

The paper presents selected results of non-destructive testing of composite helmets with deliberately introduced defects. Ultrasound pulsed infrared thermography was used for the tests. In order to determine the initial possibilities of this method, artificial defects made of Teflon featuring different area sizes and designed to simulate delamination were placed between layers of the aramid composite from which the helmet was made. The obtained results confirmed the effectiveness of the NDT method used in these tests.

2006 ◽  
Vol 321-323 ◽  
pp. 835-840 ◽  
Author(s):  
Won Tae Kim ◽  
Man Yong Choi ◽  
Jung Hak Park

This study is aimed to analyze the thermal imaging patterns presented by infrared(IR) thermography at which the metal with internal defects are thermally heated. Through the knowledge of non-destructive testing which infrared thermography can be applied to detect the defects inside the materials, there are two materials experimented; one is stainless steel and the other is cast-iron. Thermally, each material of specimens is heated at the base of the material and kept with constant temperature, The artificial defects in the specimen are formulated. Under the shape and location of the defects, temperature profiles are also measured and validated using the computer simulation. It is concluded that the characteristics of thermal patterns obtained from IR thermography are consistent with those of measurement and computations.


2019 ◽  
Vol 5 (9) ◽  
pp. 72
Author(s):  
Kamel Mouhoubi ◽  
Vincent Detalle ◽  
Jean-Marc Vallet ◽  
Jean-Luc Bodnar

Within the framework of conservation and assistance for the restoration of cultural property, a method of analysis assistance has been developed to help in the restoration of cultural heritage. Several collaborations have already demonstrated the possibility of defects detection (delamination, salts) in murals paintings using stimulated infrared thermography. One of the difficulties encountered with infrared thermography applied to the analysis of works of art is the remanence of the pictorial layer. This difficulty can sometimes induce detection artifacts and false positives. A method of thermograms post-processing called PPT (pulse phase thermography) is described. The possibilities offered by the PPT in terms of reducing the optical effects associated with the pictorial layer are highlighted first with a simulation, and then through experiments. This approach can significantly improve the study of painted works of art such as wall paintings.


2013 ◽  
Vol 64 (1) ◽  
pp. 11003 ◽  
Author(s):  
Jean-Luc Bodnar ◽  
Kamel Mouhoubi ◽  
Luigi Di Pallo ◽  
Vincent Detalle ◽  
Jean-Marc Vallet ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
C. Toscano ◽  
C. Meola ◽  
M. C. Iorio ◽  
G. M. Carlomagno

The ever wide use of composite materials in the aeronautical industry has evidenced the need for development of ever more effective nondestructive evaluation methodologies in order to reduce rejected parts and to optimize production costs. Infrared thermography has been recently enclosed amongst the standardized non destructive testing techniques, but its usefulness needs still complete assessment since it can be employed in several different arrangements and for many purposes. In this work, the possibility to detect slag inclusions and porosity is analyzed with both lock-in themography and pulse thermography in the transmission mode. To this end, carbon-fiber-peinforced polymers different specimens are specifically fabricated of several different stacking sequences and with embedded slag inclusions and porosity percentages. As main results, both of the techniques are found definitely able to reveal the presence of the defects above mentioned. Moreover, these techniques could be considered complementary in order to better characterize the nature of the detected defects.


2011 ◽  
Vol 488-489 ◽  
pp. 682-685 ◽  
Author(s):  
Lovre Krstulović-Opara ◽  
Endri Garafulić ◽  
Branko Klarin ◽  
Željko Domazet

The article presents application of non destructive testing method based on the pulse heating infrared thermography used to detect material anomalies for the case of glass reinforced polymer structures. The goal of presented research, based on the thermal gradient approach, is to establish the procedure capable of filtering out anomalies from other thermal influences caused by thermal reflections of surrounding objects, geometry influences and heat flows for observed object.


Sign in / Sign up

Export Citation Format

Share Document