scholarly journals Fiber in Broiler Feed: Its Effect on Performance, Gastro-intestinal Tract, and Microbial Profile

2021 ◽  
Vol 31 (3) ◽  
pp. 119
Author(s):  
Intan Nursiam ◽  
Muhammad Ridla ◽  
Nahrowi Nahrowi ◽  
Widya Hermana

<p>In AGP ban era, addition of a fiber source in broiler feed improves the performance and development of the gastrointestinal tract. This paper aims to describe the differences in fiber analysis methods and the effect of  fiber source addition on growth, development of the gastrointestinal tract, and microbiota profile in the digestive tract of broilers. Oat hulls, sugar beet pulp, rice hulls, pea hulls, sunflower hulls, wheat bran, and wood have been tested as fiber source in broiler feed. The effectiveness of fiber in increasing growth performance and stimulating the development of the gastrointestinal tract were influenced by the physico-chemical properties, level of addition, particle size, and fraction composition of the fiber source. Exploration of local fiber sources from Indonesia, which can have ability to increase growth performance and gastrointestinal tract development of broilers is needed to support food security in the future.</p>

Author(s):  
Shushank Sharma

The oral route is the most convenient route of administration for various drugs. It is viewed as the most convenient, most secure, and economical route for patients. Fast disintegrating tablets are popular these days as they disintegrate in the mouth within a few seconds without the use of water. The burdens of regularly used medications in pediatric and geriatric patients have been overwhelmed by quick-dissolving tablets. Natural superdisintegrants have been used for fast-dissolving tablets because they are biodegradable, chemically inert, non-harmful, more affordable, and generally accessible. Natural polymer improves the properties of the tablet as it is commonly used as diluents and binders. Natural super disintegrants decrease the release time and give healthful results to the patients. Most polymers are obtained from nature, they are cost-effective, non-toxic, and non-irritants. Disintegration is the most important step for releasing the drug from the tablet matrix to decrease the disintegration time. In this, drug and polymers come in contact with water, it swells, hydrate, and react chemically to release the drug in the mouth and gastrointestinal tract. Superdisintegrants are those substances that encourage the quick breaking down with a lesser amount contrasted with disintegrants. The quick disintegrants tablets are set up by utilizing suitable polymers which rely on the Physico-chemical properties of drugs and excipients, for example, drug and polymer compatibility, hardness and thickness of tablet, nature of drug and excipients, PH of drug and release parameters of drug formulation. Superdisintegrants are the vehicles added to tablet formulation to advance the breaking of tablets and capsules into small microparticles in aqueous media resulting in to increase in the surface area and promote quick drug release. The disintegrants have a significant capacity to oppose the efficacy of tablet binders and compression forces to form the tablet. Commonly there are three methods to incorporate disintegrants into the tablet: A. Inner addition, B. External expansion, C. Internal, and external addition. Most of the regularly based tablets are those expected to be swallow, disintegrate and release medicaments in the gastrointestinal tract but over a while tablets are manufactured to deliver medicaments in the mouth and gastrointestinal tract within few seconds of swallowing. It has been demonstrated that characteristic polymers are more effective than synthetic polymers. Some research is going to develop safe and effective medication with super disintegrating agents that can be dissolved rapidly to treat the disease.


Author(s):  
Shushank Sharma ◽  
Sikha Chauhan

The oral route is the most convenient route of administration for various drugs. It is viewed as the most convenient, most secure, and economical route for patients. Fast disintegrating tablets are popular these days as they disintegrate in the mouth within a few seconds without the use of water. The burdens of regularly used medications in pediatric and geriatric patients have been overwhelmed by quick-dissolving tablets. Natural superdisintegrants have been used for fast-dissolving tablets because they are biodegradable, chemically inert, non-harmful, more affordable, and generally accessible. Natural polymer improves the properties of the tablet as it is commonly used as diluents and binders. Natural super disintegrants decrease the release time and give healthful results to the patients. Most polymers are obtained from nature, they are cost-effective, non-toxic, and non-irritants. Disintegration is the most important step for releasing the drug from the tablet matrix to decrease the disintegration time. In this, drug and polymers come in contact with water, it swells, hydrate, and react chemically to release the drug in the mouth and gastrointestinal tract. Superdisintegrants are those substances that encourage the quick breaking down with a lesser amount contrasted with disintegrants. The quick disintegrants tablets are set up by utilizing suitable polymers which rely on the Physico-Chemical properties of drugs and excipients, for example, drug and polymer compatibility, hardness and thickness of tablet, nature of drug and excipients, PH of drug and release parameters of drug formulation. Superdisintegrants are the vehicles added to tablet formulation to advance the breaking of tablets and capsules into small microparticles in aqueous media resulting in to increase in the surface area and promote quick drug release. The disintegrants have a significant capacity to oppose the efficacy of tablet binders and compression forces to form the tablet. Commonly there are three methods to incorporate disintegrants into the tablet: A. Inner addition, B. External expansion, C. Internal, and external addition. Most of the regularly based tablets are those expected to be swallow, disintegrate and release medicaments in the gastrointestinal tract but over a while tablets are manufactured to deliver medicaments in the mouth and gastrointestinal tract within few seconds of swallowing. It has been demonstrated that characteristic polymers are more effective than synthetic polymers. Some research is going to develop safe and effective medication with super disintegrating agents that can be dissolved rapidly to treat the disease.


2017 ◽  
Vol 57 (11) ◽  
pp. 2175 ◽  
Author(s):  
John B. Furness ◽  
Jeremy J. Cottrell

The lining of the gastrointestinal tract needs to be easily accessible to nutrients and, at the same time, defend against pathogens and chemical challenges. This lining is the largest and most vulnerable surface that faces the outside world. To manage the dual problems of effective nutrient conversion and defence, the gut lining has a sophisticated system for detection of individual chemical entities, pathogenic organisms and their products, and physico-chemical properties of its contents. Detection is through specific receptors that signal to the gut endocrine system, the nervous system, the immune system and local tissue defence systems. These effectors, in turn, modify digestive functions and contribute to tissue defence. Receptors for nutrients include taste receptors for sweet, bitter and savoury, free fatty acid receptors, peptide and phytochemical receptors, that are primarily located on enteroendocrine cells. Hormones released by enteroendocrine cells act locally, through the circulation and via the nervous system, to optimise digestion and mucosal health. Pathogen detection is both through antigen presentation to T-cells and through pattern-recognition receptors (PRRs). Activation of PRRs triggers local tissue defence, for example, by causing release of antimicrobials from Paneth cells. Toxic chemicals, including plant toxins, are sensed and then avoided, expelled or metabolised. It continues to be a major challenge to develop a comprehensive understanding of the integrated responses of the gastrointestinal tract to its luminal contents.


2013 ◽  
Vol 182 (1-4) ◽  
pp. 33-43 ◽  
Author(s):  
E. Jiménez-Moreno ◽  
M. Frikha ◽  
A. de Coca-Sinova ◽  
J. García ◽  
G.G. Mateos

Author(s):  
H. Gross ◽  
H. Moor

Fracturing under ultrahigh vacuum (UHV, p ≤ 10-9 Torr) produces membrane fracture faces devoid of contamination. Such clean surfaces are a prerequisite foe studies of interactions between condensing molecules is possible and surface forces are unequally distributed, the condensate will accumulate at places with high binding forces; crystallites will arise which may be useful a probes for surface sites with specific physico-chemical properties. Specific “decoration” with crystallites can be achieved nby exposing membrane fracture faces to water vopour. A device was developed which enables the production of pure water vapour and the controlled variation of its partial pressure in an UHV freeze-fracture apparatus (Fig.1a). Under vaccum (≤ 10-3 Torr), small container filled with copper-sulfate-pentahydrate is heated with a heating coil, with the temperature controlled by means of a thermocouple. The water of hydration thereby released enters a storage vessel.


Sign in / Sign up

Export Citation Format

Share Document