scholarly journals Histogram Curve Matching Approaches for Object-based Image Classification of Land Cover and Land Use

2013 ◽  
Vol 79 (5) ◽  
pp. 433-440 ◽  
Author(s):  
Sory I. Toure ◽  
Douglas A. Stow ◽  
John R. Weeks ◽  
Sunil Kumar
Author(s):  
D. Rawal ◽  
A. Chhabra ◽  
M. Pandya ◽  
A. Vyas

Abstract. Land cover mapping using remote-sensing imagery has attracted significant attention in recent years. Classification of land use and land cover is an advantage of remote sensing technology which provides all information about land surface. Numerous studies have investigated land cover classification using different broad array of sensors, resolution, feature selection, classifiers, Classification Techniques and other features of interest from over the past decade. One, Pixel based image classification technique is widely used in the world which works on their per pixel spectral reflectance. Classification algorithms such as parallelepiped, minimum distance, maximum likelihood, Mahalanobis distance are some of the classification algorithms used in this technique. Other, Object based image classification is one of the most adapted land cover classification technique in recent time which also considers other parameters such as shape, colour, smoothness, compactness etc. apart from the spectral reflectance of single pixel.At present, there is a possibility of getting the more accurate information about the land cover classification by using latest technology, recent and relevant algorithms according to our study. In this study a combination of pixel-by-pixel image classification and object based image classification is done using different platforms like ArcGIS and e-cognition, respectively. The aim of the study is to analyze LULC pattern using satellite imagery and GIS for the Ahmedabad district in the state of Gujarat, India using a LISS-IV imagery acquired from January to April, 2017. The over-all accuracy of the classified map is 84.48% with Producer’s and User’s accuracy as 89.26% and 84.47% respectively. Kappa statistics for the classified map are calculated as 0.84. This classified map at 1:10,000 scale generated using recent available high resolution space borne data is a valuable input for various research studies over the study area and also provide useful information to town planners and civic authorities. The developed technique can be replicated for generating such LULC maps for other study areas as well.


Author(s):  
U. S. Shrestha

The mountain watershed of Nepal is highly rugged, inaccessible and difficult for acquiring field data. The application of ETM sensor Data Sat satellite image of 30 meter pixel resolutions has been used for land use and land cover classification of Tamakoshi River Basin (TRB) of Nepal. The paper tries to examine the strength of image classification methods in derivation of land use and land classification. Supervised digital image classification techniques was used for examination the thematic classification. Field verification, Google earth image, aerial photographs, topographical sheet and GPS locations were used for land use and land cover type classification, selecting training samples and assessing accuracy of classification results. Six major land use and land cover types: forest land, water bodies, bush/grass land, barren land, snow land and agricultural land was extracted using the method. Moreover, there is spatial variation of statistics of classified land uses and land cover types depending upon the classification methods. <br><br> The image data revealed that the major portion of the surface area is covered by unclassified bush and grass land covering 34.62 per cent followed by barren land (28 per cent). The knowledge derived from supervised classification was applied for the study. The result based on the field survey of the area during July 2014 also verifies the same result. So image classification is found more reliable in land use and land cover classification of mountain watershed of Nepal.


The study examines land use land cover and change detection in Chikodi taluk, Belagavi district, Karnataka. Land use land cover plays an important role in the study of global change. Due to fast urbanization there is variation in natural resources such as water body, agriculture, wasteland land etc. These environment problems are related to land use land cover changes. And for the sustainable development it is mandatory to know the interaction of human activities with the environment and to monitor the change detection. In present study for image classification Object Based Image Analysis (OBIA) method was adapted using multi-resolution segmentation for the year 1992, 1999 and 2019 imagery and classified into four different classes such as agriculture, built-up, wasteland and water-body. Random points (200) were generated in ArcGIS environment and converted points into KML layer in order to open in Google Earth. For the accuracy assessment confusion matrix was generated and result shows that overall accuracy of land use land cover for 2019 is 83% and Kappa coefficient is 0.74 which is acceptable. These outcomes of the result can provide critical input to decision making environmental management and planning the future.


Author(s):  
M. Zhang ◽  
W. Zhou ◽  
Y. Li

Accurate information on mining land use and land cover change are crucial for monitoring and environmental change studies. In this paper, RapidEye Remote Sensing Image (Map 2012) and SPOT7 Remote Sensing Image (Map 2015) in Pingshuo Mining Area are selected to monitor changes combined with object-based classification and change vector analysis method, we also used R in highresolution remote sensing image for mining land classification, and found the feasibility and the flexibility of open source software. The results show that (1) the classification of reclaimed mining land has higher precision, the overall accuracy and kappa coefficient of the classification of the change region map were 86.67&amp;thinsp;% and 89.44&amp;thinsp;%. It’s obvious that object-based classification and change vector analysis which has a great significance to improve the monitoring accuracy can be used to monitor mining land, especially reclaiming mining land; (2) the vegetation area changed from 46&amp;thinsp;% to 40&amp;thinsp;% accounted for the proportion of the total area from 2012 to 2015, and most of them were transformed into the arable land. The sum of arable land and vegetation area increased from 51&amp;thinsp;% to 70&amp;thinsp;%; meanwhile, build-up land has a certain degree of increase, part of the water area was transformed into arable land, but the extent of the two changes is not obvious. The result illustrated the transformation of reclaimed mining area, at the same time, there is still some land convert to mining land, and it shows the mine is still operating, mining land use and land cover are the dynamic procedure.


2012 ◽  
Vol 4 (9) ◽  
pp. 2530-2553 ◽  
Author(s):  
Juliane Huth ◽  
Claudia Kuenzer ◽  
Thilo Wehrmann ◽  
Steffen Gebhardt ◽  
Vo Quoc Tuan ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
pp. 96 ◽  
Author(s):  
James Brinkhoff ◽  
Justin Vardanega ◽  
Andrew J. Robson

Land cover mapping of intensive cropping areas facilitates an enhanced regional response to biosecurity threats and to natural disasters such as drought and flooding. Such maps also provide information for natural resource planning and analysis of the temporal and spatial trends in crop distribution and gross production. In this work, 10 meter resolution land cover maps were generated over a 6200 km2 area of the Riverina region in New South Wales (NSW), Australia, with a focus on locating the most important perennial crops in the region. The maps discriminated between 12 classes, including nine perennial crop classes. A satellite image time series (SITS) of freely available Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 multispectral imagery was used. A segmentation technique grouped spectrally similar adjacent pixels together, to enable object-based image analysis (OBIA). K-means unsupervised clustering was used to filter training points and classify some map areas, which improved supervised classification of the remaining areas. The support vector machine (SVM) supervised classifier with radial basis function (RBF) kernel gave the best results among several algorithms trialled. The accuracies of maps generated using several combinations of the multispectral and radar bands were compared to assess the relative value of each combination. An object-based post classification refinement step was developed, enabling optimization of the tradeoff between producers’ accuracy and users’ accuracy. Accuracy was assessed against randomly sampled segments, and the final map achieved an overall count-based accuracy of 84.8% and area-weighted accuracy of 90.9%. Producers’ accuracies for the perennial crop classes ranged from 78 to 100%, and users’ accuracies ranged from 63 to 100%. This work develops methods to generate detailed and large-scale maps that accurately discriminate between many perennial crops and can be updated frequently.


2021 ◽  
Vol 6 (1) ◽  
pp. 59-65
Author(s):  
Safridatul Audah ◽  
Muharratul Mina Rizky ◽  
Lindawati

Tapaktuan is the capital and administrative center of South Aceh Regency, which is a sub-district level city area known as Naga City. Tapaktuan is designated as a sub-district to be used for the expansion of the capital's land. Consideration of land suitability is needed so that the development of settlements in Tapaktuan District is directed. The purpose of this study is to determine the level of land use change from 2014 to 2018 by using remote sensing technology in the form of Landsat-8 OLI satellite data through image classification methods by determining the training area of the image which then automatically categorizes all pixels in the image into land cover class. The results obtained are the results of the two image classification tests stating the accuracy of the interpretation of more than 80% and the results of the classification of land cover divided into seven forms of land use, namely plantations, forests, settlements, open land, and clouds. From these classes, the area of land cover change in Tapaktuan is increasing in size from year to year.


Sign in / Sign up

Export Citation Format

Share Document