Flexural Behavior of Precracked Reinforced Concrete Beams Strengthened Externally by Steel Plates

10.14359/1466 ◽  
1995 ◽  
Vol 92 (1) ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 822 ◽  
Author(s):  
Shatha Alasadi ◽  
Payam Shafigh ◽  
Zainah Ibrahim

The purpose of this paper is to investigate the flexural behavior of over-reinforced concrete beam enhancement by bolted-compression steel plate (BCSP) with normal reinforced concrete beams under laboratory experimental condition. Three beams developed with steel plates were tested until they failed in compression compared with one beam without a steel plate. The thicknesses of the steel plates used were 6 mm, 10 mm, and 15 mm. The beams were simply supported and loaded monotonically with two-point loads. Load-deflection behaviors of the beams were observed, analyzed, and evaluated in terms of spall-off concrete loading, peak loading, displacement at mid-span, flexural stiffness (service and post-peak), and energy dissipation. The outcome of the experiment shows that the use of a steel plate can improve the failure modes of the beams and also increases the peak load and flexural stiffness. The steel development beams dissipated much higher energies with an increase in plate thicknesses than the conventional beam.


2021 ◽  
Vol 11 (5) ◽  
pp. 2348
Author(s):  
Min Sook Kim ◽  
Young Hak Lee

Many structural retrofitting methods tend to only focus on how to improve the strength and ductility of structural members. It is necessary for developing retrofitting strategy to consider not only upgrading the capacity but also achieving rapid and economical construction. In this paper, a new retrofitting details and technique is proposed to improve structural capacity and constructability for retrofitting reinforced concrete beams. The components of retrofitting are prefabricated, and the components are quickly assembled using bolts and chemical anchors on site. The details of modularized steel plates for retrofitting have been chosen based on the finite element analysis. To evaluate the structural performance of concrete beams retrofitted with the proposed details, five concrete beams with and without retrofitting were tested. The proposed retrofitting method significantly increased both the maximum load capacity and ductility of reinforced concrete beams. The test results showed that the flexural performance of the existing reinforced concrete beams increased by 3 times, the ductility by 2.5 times, and the energy dissipation capacity by 7 times.


2013 ◽  
Vol 6 (1) ◽  
pp. 36-49
Author(s):  
Ali Sabah AL-Amili

In this work aims at studying the influence of steel plate on the deflection of self- compacted reinforced concrete beams was investigated experimentally in this study to know the flexural behavior of these beams. Eight simply supported reinforced concrete beam were tested under the action of two point loads .The deflections of the beams with and without plate are measured. The steel plates of thickness (3 mm) with dimensions ( 170 × 350 mm) were used. These plates were sticked on the concrete beams using epoxy. The steel plate inside the beam was sticked with and without epoxy (epoxy type EP), while the beams were taken with and without opening (10 mm diameter). The results show that the plate increased the capacity of the beam by increased the value of failure load. Hence, the beam with internal plate with epoxy increased the failure load by 34.2% than beam without plate , and 24.6% than beam with internal plate without epoxy , and 19.7% than beam with external plate with epoxy .


Sign in / Sign up

Export Citation Format

Share Document