Crack Control of Reinforced Concrete Beams through Epoxy Bonded Steel Plates

Author(s):  
R. Jones ◽  
R. N. Swamy ◽  
J. Bloxham
2020 ◽  
Vol 10 (3) ◽  
pp. 822 ◽  
Author(s):  
Shatha Alasadi ◽  
Payam Shafigh ◽  
Zainah Ibrahim

The purpose of this paper is to investigate the flexural behavior of over-reinforced concrete beam enhancement by bolted-compression steel plate (BCSP) with normal reinforced concrete beams under laboratory experimental condition. Three beams developed with steel plates were tested until they failed in compression compared with one beam without a steel plate. The thicknesses of the steel plates used were 6 mm, 10 mm, and 15 mm. The beams were simply supported and loaded monotonically with two-point loads. Load-deflection behaviors of the beams were observed, analyzed, and evaluated in terms of spall-off concrete loading, peak loading, displacement at mid-span, flexural stiffness (service and post-peak), and energy dissipation. The outcome of the experiment shows that the use of a steel plate can improve the failure modes of the beams and also increases the peak load and flexural stiffness. The steel development beams dissipated much higher energies with an increase in plate thicknesses than the conventional beam.


2021 ◽  
Vol 318 ◽  
pp. 03016
Author(s):  
Khalid I. Qaddoory ◽  
Ahmed A. Mansor ◽  
Ahlam S. Mohammed ◽  
Bilal J. Noman

In the past few years, new techniques have emerged using steel plates instead of traditional reinforcement in the reinforced concrete beams. This study deals with using a new method for reinforced concrete beams using steel plates instead of traditional steel bars with different thicknesses of (4, 5, and 6 mm) placed vertically inside the lower part of the beam. Four reinforced concrete beams were cast and tested under a two-point load. All beams had the same cross-sectional area of reinforcement and dimensions of 2100 mm in length, 350 mm in height, and 250 in width. The results showed that as the thickness of the steel plate increases, the samples would have greater resistance until more deflection is produced. In addition, there is a reduction in the crack load, ultimate load, and yield load when replacing reinforcing bars with steel plates. In which, a reduction in crack load by about 11.1, 15.5, and 22.2% plate thicknesses of 4,5,6 mm respectively, compared to reference beam that had a deformed steel bar (Dia. 16 mm). In addition, a reduction in yielding load was observed about 42, 53, and 60% for steel plate thickness of 4, 5, and 6 mm respectively, compared to the reference model. Finally, the cracks for all the steel plate specimens compared to reference specimens were wider and smaller.


2018 ◽  
Vol 3 (4) ◽  
pp. 52 ◽  
Author(s):  
Marília Batti ◽  
Bruno Silva ◽  
Ângela Piccinini ◽  
Daiane Godinho ◽  
Elaine Antunes

In some situations, it is necessary to strengthen or rehabilitate a structure in the short term, but before doing so, a critical analysis of the underlying causes is required to find the best technique to solve the problem. The structural strengthening is used to increase an element’s ability to resist a stress when it no longer meets the original conditions or new necessities of use due to faults, deterioration, thermal variations, and lack of maintenance. The present article aims to evaluate the strengthening of reinforced concrete beams with 0.75 mm thick SAE 1020 steel plates bonded with epoxy-based structural adhesive. The steel plates were attached to the sheared area before and after the beams were taken to the breaking point load. According to the results, it was possible to conclude the effectiveness of the strengthening applied to healthy beams that had its bearing capacity increased up to 50%. The beam that was strengthened after the shear, with a fissure that was restored with epoxy-based structural adhesive, had its load bearing capacity increased by 49.2%. The beams with fissures that were filled with mortar had their bearing capacity decreased by 58.70% if compared with the reference beams, and thus they presented an unsatisfactory performance.


Sign in / Sign up

Export Citation Format

Share Document