Modeling Punching Shear of Reinforced Concrete Slabs Using Layered Finite Elements

10.14359/528 ◽  
1998 ◽  
Vol 95 (1) ◽  
2020 ◽  
pp. 136943322097814
Author(s):  
Xing-lang Fan ◽  
Sheng-jie Gu ◽  
Xi Wu ◽  
Jia-fei Jiang

Owing to their high strength-to-weight ratio, superior corrosion resistance, and convenience in manufacture, fiber-reinforced polymer (FRP) bars can be used as a good alternative to steel bars to solve the durability issue in reinforced concrete (RC) structures, especially for seawater sea-sand concrete. In this paper, a theoretical model for predicting the punching shear strength of FRP-RC slabs is developed. In this model, the punching shear strength is determined by the intersection of capacity and demanding curve of FRP-RC slabs. The capacity curve is employed based on critical shear crack theory, while the demand curve is derived with the help of a simplified tri-linear moment-curvature relationship. After the validity of the proposed model is verified with experimental data collected from the literature, the effects of concrete strength, loading area, FRP reinforcement ratio, and effective depth of concrete slabs are evaluated quantitatively.


Author(s):  
Kyoung-Kyu Choi ◽  
Gia Toai Truong ◽  
Seon-Du Kim ◽  
In-Rak Choi

2017 ◽  
Vol 145 ◽  
pp. 518-527 ◽  
Author(s):  
Juozas Valivonis ◽  
Tomas Skuturna ◽  
Mykolas Daugevičius ◽  
Arnoldas Šneideris

2018 ◽  
Vol 8 (3) ◽  
pp. 4-7
Author(s):  
Anton O. GLAZACHEV ◽  
Liliya Y. GIMADETDINOVA ◽  
Alexey P. GONCHARUK ◽  
Igor V. NEDOSEKO

The article presents a comparative analysis of the results of the calculation of rigid pavement on the shear stability obtained by the classical engineering method and using numerical calculations. The conclusion is made about the possibility of using modern design tools to select the optimal design of rigid pavement.


2019 ◽  
Author(s):  
Hector Andres Tinoco

This study presents a numerical procedure for the analysis of reinforced concrete slabs (RCS) that obey Nielsen's yield criterion (slabs orthogonally reinforced). An upper bound formulation combined with finite elements was established to solve the kinematic theorem as a conic optimization problem with the aim to determine the maximum bearing capacity of RCS. Discrete Kirchhoff finite elements were implemented and adapted to establish a limit state problem for the yield design. By using Nielsen´s criterion, a kinematic criterion was established applying the flow rule of plasticity. The kinematic criterion was included in the upper bound formulation with the aim to constraint the curvatures of the slab. The upper bound formulation was organized in the standard form of a second order cone programming (SOCP) problem since the kinematic criterion was formulated in conic form. Numerical examples were proposed to test the accuracy of the method including the adaptive remeshing strategy.


2014 ◽  
Vol 13 (3) ◽  
pp. 183-192
Author(s):  
Tadeusz Urban ◽  
Jakub Krakowski

The punching shear behavior of thick reinforced concrete slabs was analyzed in this paper by using strut-and-tie model (S-T). Calculating procedures were compared to our own experimental test results. The analyzed elements were subjected to symmetric loading and without shear reinforcement.


Sign in / Sign up

Export Citation Format

Share Document