scholarly journals 50 anos de sinergia entre Geodésia Espacial e Meteorologia: do erro no posicionamento GNSS a aplicações de previsão de precipitação de curtíssimo prazo

2020 ◽  
Vol 72 ◽  
pp. 1509-1535
Author(s):  
Tayná Aparecida Ferreira Gouveia ◽  
João Francisco Galera Monico ◽  
Daniele Barroca Marra Alves ◽  
Luiz Fernando Sapucci ◽  
Felipe Geremia Nievinski

A atmosfera neutra (ou troposfera) causa refração nos sinais de radiofrequência, que resulta em erros nas medidas do Global Navigation Satellite Systems (GNSS) empregadas no posicionamento geodésico. Já para a Meteorologia esse efeito pode representar medidas importantes da concentração dos constituintes atmosféricos, principalmente em regiões onde não se pode realizar sondagem atmosférica convencional, por meio de radiossondas acopladas a balões. Duas técnicas GNSS podem ser empregadas para isso. A primeira utiliza receptores em estações terrestres que fornecem estimativas do conteúdo integrado verticalmente de umidade na atmosfera neutra (Precipitable Water Vapor - PWV). A segunda, com receptores localizados em plataformas espaciais, com os quais obtém perfis atmosféricos de pressão, temperatura e umidade, na técnica conhecida como Rádio-ocultação GNSS. Essas medidas têm um potencial significativo para aplicações em previsões de curtíssimo prazo (30 minutos) de eventos extremos de precipitação (>35 mm). O objetivo principal deste artigo é realizar uma revisão do estado da arte da sinergia entre a Geodésia e a Meteorologia na modelagem da atmosfera neutra (neutrosfera), seu efeito no posicionamento GNSS e na estimativa dos constituintes atmosféricos e suas aplicações. Além disso, apresenta os aprimoramentos e novos desafios desenvolvidos na modelagem do atraso para o posicionamento de alta acurácia.

2020 ◽  
Vol 199 ◽  
pp. 00002
Author(s):  
Agana Louisse S. Domingo ◽  
Ernest P. Macalalad

Precipitable water vapor (PWV) is a parameter that used to describe the water vapor content in the atmosphere has the potential to become a precipitation. Thus, it is important to measure PWV and investigate its trends and variability for potential forecasting precipitation. This study presents the variation of PWV at Tanay Upper Station (14°34’52.8”N, 121°22’08.9”E) from radiosonde operated by the Philippine Atmospheric, Geophysical and Astronomical Services Administration and at PIMO station (14°38’08.5”N, 121°04’39.4”E) using Global Navigation Satellite System (GNSS) operated by NASAJet Propulsion Laboratory under the International GNSS Service (IGS) network from 2015-2017. Moreover, there is no significant difference (p-values < 0.05) among PWV radiosonde, GNSS-PWV and rainfall as a function of year of observation. Monthly mean variation conforms to the Coronas climate classification, Climate Type I, in terms of the amount of precipitation. It is shown that PWV is high during wet months and least during dry months (November to April). Further, monthly mean variation is moderate correlated with surface temperature from radiosonde (R = +0.589). Evaporation rate depends on the surface temperature, which contributes in forming water vapor. The results showed that PWV from radiosonde gave reasonable values to be considered during wet and dry season as well as the seasonal variation of rainfall.


2021 ◽  
Vol 13 (21) ◽  
pp. 4490
Author(s):  
Hang Su ◽  
Tao Yang ◽  
Kan Wang ◽  
Baoqi Sun ◽  
Xuhai Yang

Water vapor is one of the most important greenhouse gases in the world. There are many techniques that can measure water vapor directly or remotely. In this work, we first study the Global Positioning System (GPS)- and the Global Navigation Satellite System (GLONASS)-derived Zenith Wet Delay (ZWD) time series based on 11 years of the second reprocessing campaign of International Global Navigation Satellite Systems (GNSS) Service (IGS) using 320 globally distributed stations. The amount of measurement, the local environment, and the antenna radome are shown to be the main factors that affect the GNSS ZWDs and the corresponding a posteriori formal errors. Furthermore, antenna radome is able to effectively reduce the systematic bias of ZWDs and a posteriori formal errors between the GPS- and GLONASS-based solutions. With the development of the GLONASS, the ZWD differences between the GPS- and the GLONASS-based solutions have gradually decreased to sub-mm-level after GLONASS was fully operated. As the GPS-based Precipitable Water Vapor (PWV) is usually used as the reference to evaluate the other PWV products, the PWV consistency among several common techniques is evaluated, including GNSSs, spaceborne sensors, and numerical products from the European Center for Medium-Range Weather Forecasts (ECMWF). As an example of the results from a detailed comparison analysis, the long-term global analysis shows that the PWV obtained from the GNSS and the ECMWF have great intra-agreements. Based on the global distribution of the magnitude of the PWV and the PWV drift, most of the techniques showed superior agreement and proved their ability to do climate research. With a detailed study performed for the ZWDs and PWV on a long-term global scale, this contribution provides a useful supplement for future research on the GNSS ZWD and PWV.


Author(s):  
Nguyễn Định Quốc Huỳnh ◽  
Ngọc Lâu Nguyễn

Lượng hơi nước tích tụ PWV (Precipitable Water Vapor) trong khí quyển rất cần thiết trong công tác dự báo thời tiết. Việc xác định chỉ số PWV một cách chính xác hiện nay đang là vấn đề được nhiều người quan tâm trong lĩnh vực khí tượng thủy văn. Trong bài báo này, chúng tôi trình bày thuật toán xác định chỉ số PWV và kết quả so sánh giá trị PWV từ dữ liệu bóng thám không và từ dữ liệu GNSS (Global Navigation Satellite System) tại trạm Tân Sơn Hòa TP.HCM. Độ lệch giữa các kết quả PWV nhỏ hơn 1.2mm. Ngoài ra giá trị PWV thay đổi phù hợp với thời tiết thay đổi trong ngày khảo sát.


Sign in / Sign up

Export Citation Format

Share Document