scholarly journals Evaluation of Precipitable Water Vapor Retrieval from Homogeneously Reprocessed Long-Term GNSS Tropospheric Zenith Wet Delay and Multi-Technique

2021 ◽  
Vol 13 (21) ◽  
pp. 4490
Author(s):  
Hang Su ◽  
Tao Yang ◽  
Kan Wang ◽  
Baoqi Sun ◽  
Xuhai Yang

Water vapor is one of the most important greenhouse gases in the world. There are many techniques that can measure water vapor directly or remotely. In this work, we first study the Global Positioning System (GPS)- and the Global Navigation Satellite System (GLONASS)-derived Zenith Wet Delay (ZWD) time series based on 11 years of the second reprocessing campaign of International Global Navigation Satellite Systems (GNSS) Service (IGS) using 320 globally distributed stations. The amount of measurement, the local environment, and the antenna radome are shown to be the main factors that affect the GNSS ZWDs and the corresponding a posteriori formal errors. Furthermore, antenna radome is able to effectively reduce the systematic bias of ZWDs and a posteriori formal errors between the GPS- and GLONASS-based solutions. With the development of the GLONASS, the ZWD differences between the GPS- and the GLONASS-based solutions have gradually decreased to sub-mm-level after GLONASS was fully operated. As the GPS-based Precipitable Water Vapor (PWV) is usually used as the reference to evaluate the other PWV products, the PWV consistency among several common techniques is evaluated, including GNSSs, spaceborne sensors, and numerical products from the European Center for Medium-Range Weather Forecasts (ECMWF). As an example of the results from a detailed comparison analysis, the long-term global analysis shows that the PWV obtained from the GNSS and the ECMWF have great intra-agreements. Based on the global distribution of the magnitude of the PWV and the PWV drift, most of the techniques showed superior agreement and proved their ability to do climate research. With a detailed study performed for the ZWDs and PWV on a long-term global scale, this contribution provides a useful supplement for future research on the GNSS ZWD and PWV.

2020 ◽  
Vol 199 ◽  
pp. 00002
Author(s):  
Agana Louisse S. Domingo ◽  
Ernest P. Macalalad

Precipitable water vapor (PWV) is a parameter that used to describe the water vapor content in the atmosphere has the potential to become a precipitation. Thus, it is important to measure PWV and investigate its trends and variability for potential forecasting precipitation. This study presents the variation of PWV at Tanay Upper Station (14°34’52.8”N, 121°22’08.9”E) from radiosonde operated by the Philippine Atmospheric, Geophysical and Astronomical Services Administration and at PIMO station (14°38’08.5”N, 121°04’39.4”E) using Global Navigation Satellite System (GNSS) operated by NASAJet Propulsion Laboratory under the International GNSS Service (IGS) network from 2015-2017. Moreover, there is no significant difference (p-values < 0.05) among PWV radiosonde, GNSS-PWV and rainfall as a function of year of observation. Monthly mean variation conforms to the Coronas climate classification, Climate Type I, in terms of the amount of precipitation. It is shown that PWV is high during wet months and least during dry months (November to April). Further, monthly mean variation is moderate correlated with surface temperature from radiosonde (R = +0.589). Evaporation rate depends on the surface temperature, which contributes in forming water vapor. The results showed that PWV from radiosonde gave reasonable values to be considered during wet and dry season as well as the seasonal variation of rainfall.


2020 ◽  
Vol 72 ◽  
pp. 1509-1535
Author(s):  
Tayná Aparecida Ferreira Gouveia ◽  
João Francisco Galera Monico ◽  
Daniele Barroca Marra Alves ◽  
Luiz Fernando Sapucci ◽  
Felipe Geremia Nievinski

A atmosfera neutra (ou troposfera) causa refração nos sinais de radiofrequência, que resulta em erros nas medidas do Global Navigation Satellite Systems (GNSS) empregadas no posicionamento geodésico. Já para a Meteorologia esse efeito pode representar medidas importantes da concentração dos constituintes atmosféricos, principalmente em regiões onde não se pode realizar sondagem atmosférica convencional, por meio de radiossondas acopladas a balões. Duas técnicas GNSS podem ser empregadas para isso. A primeira utiliza receptores em estações terrestres que fornecem estimativas do conteúdo integrado verticalmente de umidade na atmosfera neutra (Precipitable Water Vapor - PWV). A segunda, com receptores localizados em plataformas espaciais, com os quais obtém perfis atmosféricos de pressão, temperatura e umidade, na técnica conhecida como Rádio-ocultação GNSS. Essas medidas têm um potencial significativo para aplicações em previsões de curtíssimo prazo (30 minutos) de eventos extremos de precipitação (>35 mm). O objetivo principal deste artigo é realizar uma revisão do estado da arte da sinergia entre a Geodésia e a Meteorologia na modelagem da atmosfera neutra (neutrosfera), seu efeito no posicionamento GNSS e na estimativa dos constituintes atmosféricos e suas aplicações. Além disso, apresenta os aprimoramentos e novos desafios desenvolvidos na modelagem do atraso para o posicionamento de alta acurácia.


Author(s):  
Nguyễn Định Quốc Huỳnh ◽  
Ngọc Lâu Nguyễn

Lượng hơi nước tích tụ PWV (Precipitable Water Vapor) trong khí quyển rất cần thiết trong công tác dự báo thời tiết. Việc xác định chỉ số PWV một cách chính xác hiện nay đang là vấn đề được nhiều người quan tâm trong lĩnh vực khí tượng thủy văn. Trong bài báo này, chúng tôi trình bày thuật toán xác định chỉ số PWV và kết quả so sánh giá trị PWV từ dữ liệu bóng thám không và từ dữ liệu GNSS (Global Navigation Satellite System) tại trạm Tân Sơn Hòa TP.HCM. Độ lệch giữa các kết quả PWV nhỏ hơn 1.2mm. Ngoài ra giá trị PWV thay đổi phù hợp với thời tiết thay đổi trong ngày khảo sát.


2019 ◽  
Vol 3 ◽  
pp. 741
Author(s):  
Wedyanto Kuntjoro ◽  
Z.A.J. Tanuwijaya ◽  
A. Pramansyah ◽  
Dudy D. Wijaya

Kandungan total uap air troposfer (precipitable water vapor) di suatu tempat dapat diestimasi berdasarkan karakteristik bias gelombang elektromagnetik dari satelit navigasi GPS, berupa zenith wet delay (ZWD). Pola musiman deret waktu ZWD sangat penting dalam studi siklus hidrologi khususnya yang terkait dengan kejadian-kejadian banjir. Artikel ini menganalisis korelasi musiman antara ZWD dan debit sungai Cikapundung di wilayah Bandung Utara berdasarkan estimasi rataan pola musimannya. Berdasarkan rekonstruksi sejumlah komponen harmonik ditemukan bahwa pola musiman ZWD memiliki kemiripan dan korelasi yang kuat dengan pola musiman debit sungai. Pola musiman ZWD dan debit sungai dipengaruhi secara kuat oleh fenomena pertukaran Monsun Asia dan Monsun Australia. Korelasi linier di antara keduanya menunjukkan hasil yang sangat kuat, dimana hampir 90% fluktuasi debit sungai dipengaruhi oleh kandungan uap air di troposfer dengan level signifikansi 95%. Berdasarkan spektrum amplitudo silang dan koherensi, kedua kuantitas ini nampak didominasi oleh siklus monsun satu tahunan disertai indikasi adanya pengaruh siklus tengah tahunan dan 4 bulanan.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 713 ◽  
Author(s):  
Hélène Vérèmes ◽  
Guillaume Payen ◽  
Philippe Keckhut ◽  
Valentin Duflot ◽  
Jean-Luc Baray ◽  
...  

The Maïdo high-altitude observatory located in Reunion Island (21 ∘ S, 55.5 ∘ E) is equipped with the Lidar1200, an innovative Raman lidar designed to measure the water vapor mixing ratio in the troposphere and the lower stratosphere, to perform long-term survey and processes studies in the vicinity of the tropopause. The calibration methodology is based on a GNSS (Global Navigation Satellite System) IWV (Integrated Water Vapor) dataset. The lidar water vapor measurements from November 2013 to October 2015 have been calibrated according to this methodology and used to evaluate the performance of the lidar. The 2-year operation shows that the calibration uncertainty using the GNSS technique is in good agreement with the calibration derived using radiosondes. During the MORGANE (Maïdo ObservatoRy Gaz and Aerosols NDACC Experiment) campaign (Reunion Island, May 2015), CFH (Cryogenic Frost point Hygrometer) radiosonde and Raman lidar profiles are compared and show good agreement up to 22 km asl; no significant biases are detected and mean differences are smaller than 9% up to 22 km asl.


2018 ◽  
Vol 10 (04) ◽  
pp. 1850010
Author(s):  
Kimberly Leung ◽  
Aneesh C. Subramanian ◽  
Samuel S. P. Shen

This paper studies the statistical characteristics of a unique long-term high-resolution precipitable water vapor (PWV) data set at Darwin, Australia, from 12 March 2002 to 28 February 2011. To understand the convective precipitation processes for climate model development, the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) program made high-frequency radar observations of PWV at the Darwin ARM site and released the best estimates from the radar data retrievals for this time period. Based on the best estimates, we produced a PWV data set on a uniform 20-s time grid. The gridded data were sufficient to show the fractal behavior of precipitable water with Hausdorff dimension equal to 1.9. Fourier power spectral analysis revealed modulation instability due to two sideband frequencies near the diurnal cycle, which manifests as nonlinearity of an atmospheric system. The statistics of PWV extreme values and daily rainfall data show that Darwin’s PWV has El Nino Southern Oscillation (ENSO) signatures and has potential to be a predictor for weather forecasting. The right skewness of the PWV data was identified, which implies an important property of tropical atmosphere: ample capacity to hold water vapor. The statistical characteristics of this long-term high-resolution PWV data will facilitate the development and validation of climate models, particularly stochastic models.


Sign in / Sign up

Export Citation Format

Share Document