scholarly journals So sánh lượng hơi nước tích tụ tính bằng GNSS và bằng bóng thám không tại trạm Tân Sơn Hòa, thành phố Hồ Chí Minh

Author(s):  
Nguyễn Định Quốc Huỳnh ◽  
Ngọc Lâu Nguyễn

Lượng hơi nước tích tụ PWV (Precipitable Water Vapor) trong khí quyển rất cần thiết trong công tác dự báo thời tiết. Việc xác định chỉ số PWV một cách chính xác hiện nay đang là vấn đề được nhiều người quan tâm trong lĩnh vực khí tượng thủy văn. Trong bài báo này, chúng tôi trình bày thuật toán xác định chỉ số PWV và kết quả so sánh giá trị PWV từ dữ liệu bóng thám không và từ dữ liệu GNSS (Global Navigation Satellite System) tại trạm Tân Sơn Hòa TP.HCM. Độ lệch giữa các kết quả PWV nhỏ hơn 1.2mm. Ngoài ra giá trị PWV thay đổi phù hợp với thời tiết thay đổi trong ngày khảo sát.

2020 ◽  
Vol 199 ◽  
pp. 00002
Author(s):  
Agana Louisse S. Domingo ◽  
Ernest P. Macalalad

Precipitable water vapor (PWV) is a parameter that used to describe the water vapor content in the atmosphere has the potential to become a precipitation. Thus, it is important to measure PWV and investigate its trends and variability for potential forecasting precipitation. This study presents the variation of PWV at Tanay Upper Station (14°34’52.8”N, 121°22’08.9”E) from radiosonde operated by the Philippine Atmospheric, Geophysical and Astronomical Services Administration and at PIMO station (14°38’08.5”N, 121°04’39.4”E) using Global Navigation Satellite System (GNSS) operated by NASAJet Propulsion Laboratory under the International GNSS Service (IGS) network from 2015-2017. Moreover, there is no significant difference (p-values < 0.05) among PWV radiosonde, GNSS-PWV and rainfall as a function of year of observation. Monthly mean variation conforms to the Coronas climate classification, Climate Type I, in terms of the amount of precipitation. It is shown that PWV is high during wet months and least during dry months (November to April). Further, monthly mean variation is moderate correlated with surface temperature from radiosonde (R = +0.589). Evaporation rate depends on the surface temperature, which contributes in forming water vapor. The results showed that PWV from radiosonde gave reasonable values to be considered during wet and dry season as well as the seasonal variation of rainfall.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 713 ◽  
Author(s):  
Hélène Vérèmes ◽  
Guillaume Payen ◽  
Philippe Keckhut ◽  
Valentin Duflot ◽  
Jean-Luc Baray ◽  
...  

The Maïdo high-altitude observatory located in Reunion Island (21 ∘ S, 55.5 ∘ E) is equipped with the Lidar1200, an innovative Raman lidar designed to measure the water vapor mixing ratio in the troposphere and the lower stratosphere, to perform long-term survey and processes studies in the vicinity of the tropopause. The calibration methodology is based on a GNSS (Global Navigation Satellite System) IWV (Integrated Water Vapor) dataset. The lidar water vapor measurements from November 2013 to October 2015 have been calibrated according to this methodology and used to evaluate the performance of the lidar. The 2-year operation shows that the calibration uncertainty using the GNSS technique is in good agreement with the calibration derived using radiosondes. During the MORGANE (Maïdo ObservatoRy Gaz and Aerosols NDACC Experiment) campaign (Reunion Island, May 2015), CFH (Cryogenic Frost point Hygrometer) radiosonde and Raman lidar profiles are compared and show good agreement up to 22 km asl; no significant biases are detected and mean differences are smaller than 9% up to 22 km asl.


2020 ◽  
Vol 38 (1) ◽  
pp. 179-189
Author(s):  
Marion Heublein ◽  
Patrick Erik Bradley ◽  
Stefan Hinz

Abstract. In this work, the effect of the observing geometry on the tomographic reconstruction quality of both a regularized least squares (LSQ) approach and a compressive sensing (CS) approach for water vapor tomography is compared based on synthetic Global Navigation Satellite System (GNSS) slant wet delay (SWD) estimates. In this context, the term “observing geometry” mainly refers to the number of GNSS sites situated within a specific study area subdivided into a certain number of volumetric pixels (voxels) and to the number of signal directions available at each GNSS site. The novelties of this research are (1) the comparison of the observing geometry's effects on the tomographic reconstruction accuracy when using LSQ or CS for the solution of the tomographic system and (2) the investigation of the effect of the signal directions' variability on the tomographic reconstruction. The tomographic reconstruction is performed based on synthetic SWD data sets generated, for many samples of various observing geometry settings, based on wet refractivity information from the Weather Research and Forecasting (WRF) model. The validation of the achieved results focuses on a comparison of the refractivity estimates with the input WRF refractivities. The results show that the recommendation of Champollion et al. (2004) to discretize the analyzed study area into voxels with horizontal sizes comparable to the mean GNSS intersite distance represents a good rule of thumb for both LSQ- and CS-based tomography solutions. In addition, this research shows that CS needs a variety of at least 15 signal directions per site in order to estimate the refractivity field more accurately and more precisely than LSQ. Therefore, the use of CS is particularly recommended for water vapor tomography applications for which a high number of multi-GNSS SWD estimates are available.


2020 ◽  
Vol 12 (3) ◽  
pp. 373 ◽  
Author(s):  
Lewen Zhao ◽  
Pavel Václavovic ◽  
Jan Douša

The tropospheric delays estimated from the Global Navigation Satellite System (GNSS) have been proven to be an efficient product for monitoring variations of water vapor, which plays an important role in meteorology applications. The operational GNSS water vapor monitoring system is currently based on the Global Positioning System (GPS) and GLObal NAvigation Satellite System(GLONASS) dual-frequency observations. The Galileo satellite navigation system has been evolving continuously, and on 11 February 2019, the constellation reached 22 active satellites, achieving a capability of standalone Precise Point Positioning (PPP) and tropospheric estimation that is global in scope. This enhancement shows a 37% improvement if the precision of the Galileo-only zenith tropospheric delay, while we may anticipate further benefits in terms of tropospheric gradients and slant delays in the future if an optimal multi-constellation and multi-frequency processing strategy is used. First, we analyze the performance of the multi-frequency troposphere estimates based on the PPP raw observation model by comparing it with the standard ionosphere-free model. The performance of the Galileo-only tropospheric solution is then validated with respect to GPS-only solution using 48 globally distributed Multi-GNSS Experiment (MGEX) stations. The averaged bias and standard deviations are −0.3 and 5.8 mm when only using GPS satellites, respectively, and 0.0 and 6.2 mm for Galileo, respectively, when compared to the International GNSS Service (IGS) final Zenith Troposphere Delay(ZTD) products. Using receiver antenna phase center corrections from the corresponding GPS dual-frequency observations does not affect the Galileo PPP ambiguity float troposphere solutions. These results demonstrate a comparable precision achieved for both Galileo-only and GPS-only ZTD solutions, however, horizontal tropospheric gradients, estimated from standalone GPS and Galileo solutions, still show larger discrepancies, mainly due to their being less Galileo satellites than GPS satellites. Including Galileo E1, E5a, E5b, and E5 signals, along with their proper observation weighting, show the benefit of multi-frequency observations, further improving the ZTD precision by 4% when compared to the dual-frequency raw observation model. Overall, the presented results demonstrate good prospects for the application of multi-frequency Galileo observations for the tropospheric parameter estimates.


Author(s):  
Weeranat Phasamak ◽  
Seubson Soisuvarn ◽  
Yuttapong Rangsanseri

Retrieval of Total Precipitable Water (TPW) using ground-based Global Navigation Satellite System (GNSS) observations is a challenging task due to its real‐time and high temporal resolution. In this paper, we present a method for establishing an analytic model for retrieving the total precipitable water (TPW) based on Global Navigation Satellite System (GNSS) observations over one-year period from 12 distributed stations across Thailand. The derived zenith total delay (ZTD) at all stations agrees well with the TPW data available from Global Data Assimilation System (GDAS) Numerical Weather Prediction (NWP) model. At first, a unique relationship between the ZTD and the TPW was established by taking into account of the variation of station altitudes. In addition, the bias correction technique using probability distribution function (PDF) matching was also applied to improve the final model. The inversion model of TPW from ZTD is then easily obtained using a numerical technique. The performance of our method has been successfully evaluated on an independent test data. This model can be useful in the further near real-time TPW measurements from widely available GNSS receivers.


2020 ◽  
Vol 72 ◽  
pp. 1509-1535
Author(s):  
Tayná Aparecida Ferreira Gouveia ◽  
João Francisco Galera Monico ◽  
Daniele Barroca Marra Alves ◽  
Luiz Fernando Sapucci ◽  
Felipe Geremia Nievinski

A atmosfera neutra (ou troposfera) causa refração nos sinais de radiofrequência, que resulta em erros nas medidas do Global Navigation Satellite Systems (GNSS) empregadas no posicionamento geodésico. Já para a Meteorologia esse efeito pode representar medidas importantes da concentração dos constituintes atmosféricos, principalmente em regiões onde não se pode realizar sondagem atmosférica convencional, por meio de radiossondas acopladas a balões. Duas técnicas GNSS podem ser empregadas para isso. A primeira utiliza receptores em estações terrestres que fornecem estimativas do conteúdo integrado verticalmente de umidade na atmosfera neutra (Precipitable Water Vapor - PWV). A segunda, com receptores localizados em plataformas espaciais, com os quais obtém perfis atmosféricos de pressão, temperatura e umidade, na técnica conhecida como Rádio-ocultação GNSS. Essas medidas têm um potencial significativo para aplicações em previsões de curtíssimo prazo (30 minutos) de eventos extremos de precipitação (>35 mm). O objetivo principal deste artigo é realizar uma revisão do estado da arte da sinergia entre a Geodésia e a Meteorologia na modelagem da atmosfera neutra (neutrosfera), seu efeito no posicionamento GNSS e na estimativa dos constituintes atmosféricos e suas aplicações. Além disso, apresenta os aprimoramentos e novos desafios desenvolvidos na modelagem do atraso para o posicionamento de alta acurácia.


Sign in / Sign up

Export Citation Format

Share Document