scholarly journals Facultative parthenogenesis in the burrowing mayfly, Ephoron eophilum (Ephemeroptera: Polymitarcyidae) with an extremely short alate stage

2015 ◽  
Vol 112 (4) ◽  
pp. 606-612 ◽  
Author(s):  
Kazuki SEKINE ◽  
Koji TOJO ◽  
Yeon Jae BAE
Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1793
Author(s):  
Justin Van Goor ◽  
Diane C. Shakes ◽  
Eric S. Haag

Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two “seminal” contributions of G. A. Parker. 


2014 ◽  
Vol 29 (3) ◽  
pp. 337-344
Author(s):  
Kristin M. Brunk ◽  
Mark R. Vinson ◽  
Derek H. Ogle ◽  
Lori M. Evrard
Keyword(s):  

1983 ◽  
Vol 115 (10) ◽  
pp. 1329-1354 ◽  
Author(s):  
B. W. Betz

AbstractTrichadenotecnum alexanderae Sommerman is shown to represent one biparental (= euphrasic) species capable of facultative parthenogenesis (thelytoky) and three uniparental (= obligatorily parthenogenetic) sibling species, as determined by tests for mating, life history observations, and morphological analysis of specimens over the geographic range of the species complex. The name T. alexanderae is restricted to the biparental species because the holotype is a male. The three uniparental species are here named and described as T. castum n. sp., T. merum n. sp., and T. innuptum n. sp. The female of T. alexanderae is redescribed to allow its separation from the three uniparental species. A key to females of the species complex is supplied. All three uniparental species were derived from the biparental ancestor of T. alexanderae. Most collections of populations represented only by females consist of one or more uniparental species. Facultative parthenogenesis is shown to maintain a population of T. alexanderae through one generation only. The biparental species is found not to be restricted geographically to a relictual or peripheral range within the species complex, but to occupy a rather wide, north-temperate distribution across eastern North America.


Zootaxa ◽  
2019 ◽  
Vol 4671 (3) ◽  
pp. 420-426
Author(s):  
XIONGDONG ZHOU ◽  
MIKE BISSET ◽  
MENGZHEN XU ◽  
ZHAOYIN WANG

A new species of sand-burrowing mayfly (Ephemeroptera: Behningiidae), Behningia nujiangensis Zhou & Bisset, is described based on more than 50 nymphs collected from the Nujiang River in Yunnan Province, P.R. China. This is the first species of the family Behningiidae discovered in China. It is also the second species of genus Behningia, and the third species of the family Behningiidae collected from the Oriental biogeographic region. The shapes of the labrum and the labium in B. nujiangensis are markedly different from those found in other species of Behningia. Differences in the mandibles, the galea-lacina of maxillae, and both the prothoracic and metathoracic legs differentiate B. nujiangensis from both B. baei and B. ulmeri. The biology of and conservation challenges for B. nujiangensis are also briefly discussed. 


Sign in / Sign up

Export Citation Format

Share Document