scholarly journals Effectiveness of inundative releases of Anthocoris nemoralis (Hemiptera: Anthocoridae) in controlling the olive psyllid Euphyllura olivina (Hemiptera: Psyllidae)

2021 ◽  
Vol 118 ◽  
pp. 135-141
Author(s):  
Naceur GHARBI
1988 ◽  
Vol 78 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Philip J. Newton

AbstractInundative releases of the indigenous egg parasitoid Trichogrammatoidea cryptophlebiae Nagaraja were made against Cryptophlebia leucotreta (Meyrick) in two sweet orange orchards in the Transvaal lowveld, South Africa. The rate of parasitism was raised to similar levels in the two release areas, but there was a significant decrease in crop damage in only one of them. Although the larval population was twice as large in a control orchard, the losses there were compensated for by a larger total crop. Three explanations for the different performances of the parasitoids are examined. Movement away from release areas was not apparent. Rates of parasitism at the tops or bottoms of trees or at the four cardinal aspects were not significantly different overall but should have been to compensate for the linear increase in numbers of host eggs with height, and the larger numbers on the warmer northern and eastern sides of trees. Parasitism was higher at the tree tops than at the bottoms in the orchard that lost the least fruit. The stochastic processes governing host-egg distribution on fruit were also important. Pest density was higher in the release areas than the control, and eggs were distributed more contagiously in the orchard with the most crop loss.


2011 ◽  
Vol 30 (12) ◽  
pp. 1529-1534 ◽  
Author(s):  
Ali Debo ◽  
Thabèt Yangui ◽  
Abdelhafidh Dhouib ◽  
Moheiddine Ksantini ◽  
Sami Sayadi

2000 ◽  
Vol 132 (3) ◽  
pp. 373-386 ◽  
Author(s):  
David B. Orr ◽  
Charles P-C. Suh ◽  
Kenneth W. Mccravy ◽  
C. Wayne Berisford ◽  
Gary L. Debarr

AbstractInundative releases of Trichogramma exiguum Pinto and Platner were evaluated for suppression of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock), in first-year loblolly pine, Pinus taeda L., plantations. Three releases, spaced 7 d apart, were made in three 0.4-ha plots during second-generation R. frustrana egg deposition. Each release included three cohorts of T. exiguum developmentally separated by 25 degree-days. Mean ± SD field release rate for each cohort was 328 238 ± 88 379 females/ha. Mean T. exiguum emergence under laboratory conditions for released cohorts was 96 ± 2%, with 74 ± 3% females, of which 1 ± 1% of females displayed brachyptery; female longevity was 18 ± 3 d. Field emergence averaged 96 ± 4%. Parasitism of R. frustrana eggs was significantly increased, ranging from 40 ± 19 to 73 ± 22% in T. exiguum-treated plots and 17 ± 17 to 67 ± 21% in control plots. Data from all treated plots combined showed R. frustrana egg survival (hatching) was significantly reduced by 46%, and larval populations were significantly reduced by 60%. There was no significant difference in the percentage of terminals damaged between T. exiguum-treated (31 ± 16%) and control plots (45 ± 10%); however, length of terminal damage was significantly lower in treated plots. The percentage of damage to top whorl shoots was significantly lower in T. exiguum-treated plots compared with control plots, but there was no significant difference in length of tunneling damage. Damage to remaining shoots was not significantly different between T. exiguum-treated and control plots. Microhabitat significantly influenced both mean maximum and minimum temperature and the number of consecutive hours per day that were at or above 35 °C (critical temperature for T. exiguum survival). Soil surface with no cover had the greatest number of hours at or above 35 °C, followed by soil surface with herbaceous cover, and canopies of small trees (0.4 m tall). Canopy habitats in larger trees (0.9–1.8 m tall) had the most moderate temperature conditions. Parasitoid emergence was significantly reduced in response to increasing number of consecutive hours at or above 35 °C. Predation of parasitoids prior to emergence was significantly affected by microhabitat and by the length of time capsules were in the field before T. exiguum emergence (i.e., cohort number).


2020 ◽  
Vol 34 (1) ◽  
pp. 47-51
Author(s):  
M. VISALAKSHI ◽  
B. BHAVAN ◽  
◽  

2021 ◽  
pp. 183-196
Author(s):  
A. Guessab ◽  
M. Elouissi ◽  
F. Lazreg ◽  
A. Elouissi

The olive psyllid Euphyllura olivina Costa (Homoptera, Psyllidae) causes considerable damage in olive groves in the Mediterranean basin, there by affecting production. To assess the rate of infestation and provide elements of integrated pest management, we monitored the life cycle and bio–ecology of this pest through population counts on the leaves and twigs of the tree from 29 March 2019 to 27 March 2020 at two relatively distant olive farms (Ain fares and Oued taria) in the wilaya of Mascara, Algeria. Our results showed that infestation was high on trees in the Oued taria farm. We found that E. olivina developed two generations per year, in spring, influenced by the climatic factors. The difference between the relative abundance of the different life stages (eggs, larval instar 1, 2, 3, 4 and 5, female and male) in the cardinals orientations was significant. Infestation was highest on the southern and central orientations of the tree. Populations fluctuations were significantly affected by season at both farms.


1999 ◽  
Vol 34 (1) ◽  
pp. 101-112 ◽  
Author(s):  
E. R. Mitchell ◽  
G. Y. Hu ◽  
J. S. Okine ◽  
J. E. Carpenter

Cocoons of Cotesia plutellae (Kurdjumov) were released for nine consecutive wk along the margins of two commercial cabbage (Brassica oleracea var. bravo L.) fields near Bunnell, Flagler Co., FL, in spring 1996. The larval parasitism of diamondback moth, Plutella xylostella (L.), by C. plutellae and by the native parasitoid Diadegma insulare (Cresson) was evaluated in release fields and in nearby cabbage fields using two methods-sentinel collard (Brassica oleracea var. acephala L.) or sentinel cabbage plants and non-sentinel plants. Total parasitism of diamondback moth larvae on sentinel plants in the release and adjacent fields was 35.7%. There were no significant differences in the level of parasitism by C. plutellae among sentinel plant locations within the release fields. In non-release fields, parasitoids spread as far as 1,500 m from the nearest release site during the release period, but parasitism of larvae on sentinel plants decreased as the distance from the release area increased. Parasitism of diamondback moth larvae by D. insulare was 8.3% in C. plutellae release and adjacent fields, but 14.6% in the nearby fields. Sampling of non-sentinel cabbage plants for diamondback moth larvae demonstrated a total of 37.4% larval parasitism by C. plutellae in the release and adjacent fields, similar to that recorded on sentinel plants. However, C. plutellae were detected only as far as 800 m from the release site on non-sentinel cabbage plants, and total parasitism in the dispersal fields also was very low. Diadegma insulare contributed only 1.1% parasitism of larvae sampled from non-sentinel plants in all cabbage fields. Cotesia plutellae was more effective than D. insulare in attacking diamondback moth larvae in this study where field populations of diamondback moth were low (<0.1 larva per cabbage plant).


Sign in / Sign up

Export Citation Format

Share Document