Comparative Study of Adaptive Hamiltonian Control Laws for DC Microgrid Stabilization: An Fuel Cell Boost Converter

Author(s):  
Damien Guilbert ◽  
Babak Nahid-Mobarakeh ◽  
Serge Pierfederici ◽  
Nicu Bizon ◽  
Pongsiri Mungporn ◽  
...  

Future smart grids can be seen as a system of interlinked microgrids, including small-scale local power systems. They consist of main power sources, external loads, and energy storage devices. In these microgrids, the negative incremental impedance behavior of constant power loads (CPLs) is of major concern since it can lead to instability and oscillations. To cope with this issue, this article aims to propose a comparative study of adaptive Hamiltonian control laws, also known as interconnection and damping–assignment–passivity–based controllers (IDA-PBC). These control laws are developed to ensure the stability of the DC output voltage of a boost converter supplied by a proton exchange membrane fuel cell (PEMFC) source. To validate the develop control laws, experiments have been performed on a fit test bench including a real 2.5 kW PEMFC stack (hydrogen is supplied by a reformer engine), a DC-DC step-up circuit, and a real-time controller dSPACE (implementation of the control laws). Moreover, a comparative study has been carried out between the proposed three adaptive Hamiltonian control laws and a classic linear cascaded proportional–integral (PI) control law. The obtained results by simulations through MATLAB/SimulinkTM and experimentally have allowed demonstrating that the third Hamiltonian control law presents the best performances over the other control laws.

Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
A. De Pascale ◽  
F. Melino ◽  
A. Peretto ◽  
...  

The penetration of renewable sources, particularly wind and solar, into the grid has been increasing in recent years. As a consequence, there have been serious concerns over reliable and safety operation of power systems. One possible solution, to improve grid integrity, is to integrate energy storage devices into power system network: storing energy produced in periods of low demand to later use, ensuring full exploitation of intermittent available sources. Focusing on photovoltaic energy system, energy storage is needed with the purpose of ensuring continuous power flow to minimize or to neglect electrical grid supply. A comprehensive study on a hybrid micro-CHP system based on photovoltaic panels using hydrogen as energy storage technologies has been performed. This study examines the feasibility of replacing electricity provided by the grid with a hybrid system to meet household demand. This paper is a part of an experimental and a theoretical study which is currently under development at University of Bologna where a test facility is under construction for the experimental characterization of a small scale cogenerative power system. This paper presents the theoretical results of a hybrid system performance simulations made of a photovoltaic array an electrolyzer with a H2 tank and a Proton Exchange Membrane fuel cell stack designed to satisfy typical household electrical demand. The performance of this system have been evaluated by the use of a calculation code, in-house developed by the University of Bologna. Results of the carried out parametric investigations identify photovoltaic and fuel cell systems’ optimal size in order to minimize the purchasing of electrical energy from the grid. Future activities will be the tuning of the software with the experimental results, in order to realize a code able to define the correct size of each sub-system, once the load profile of the utility is known or estimated.


2013 ◽  
Vol 768 ◽  
pp. 398-403
Author(s):  
Jagriti Narayan ◽  
R. Johnson Uthayakumar

A new three input DC-DC boost converter fed symmetrical multilevel inverter is proposed. The converter interfaces two unidirectional input power ports and a bidirectional port to battery in a unified structure. This converter uses hybrid alternative energy source such as Photo Voltaic (PV) source, Fuel Cell (FC) source, and Battery. Supplying the output load, charging or discharging the battery can be made by the PV and the FC power sources individually or simultaneously. The proposed structure utilizes only four power switches that are independently controlled with four different duty ratios. Proposed inverter uses two cells for five level output. Boost converter provided hybrid sources to multilevel inverter. Here we promote inverter for attain a pure sinusoidal harmonics free ac application.Key Words-Photovoltaic/fuel cell (PV/FC)/battery hybrid power system, three-input dcdc boost converter.


2014 ◽  
Vol 11 (4) ◽  
Author(s):  
C. A. C. Sequeira ◽  
L. Amaral

Proton exchange membrane fuel cells (PEMFCs) have many advantages among the various types of fuel cells, such as high energy density, low temperature operation, near-zero pollution, and quick starting. Thereby, PEMFCs have been considered as the most promising alternative power sources in the transportation and stationary fields. Among the components of PEMFCs, the bipolar plates are the most representative regarding cost and volume, however, they have relevant functions on the fuel cell stack. There are about 500 bipolar plates in a PEMFC for a typical passenger car and, thus, the commercialization of the fuel cell technology becomes quite challenging. Important key aspects for a successful fuel cell stack are the design and the manufacturing process of the bipolar plate. For efficient mass production, the cycle time of the process is even more important than the material costs. It is, therefore, very important that the used material is appropriate for a fast manufacturing process. Recent developments are overcoming these issues, leading to improvements on the overall fuel cell performance and durability.


Sign in / Sign up

Export Citation Format

Share Document