Large-scale Data Classification based on K-means Clustering and Deep Learning

Author(s):  
Nuntuschaporn Senawong ◽  
Supawadee Wichitchan ◽  
Orawich Kumphon
2017 ◽  
Vol 68 ◽  
pp. 32-42 ◽  
Author(s):  
Rodrigo F. Berriel ◽  
Franco Schmidt Rossi ◽  
Alberto F. de Souza ◽  
Thiago Oliveira-Santos

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bowen Shen ◽  
Hao Zhang ◽  
Cong Li ◽  
Tianheng Zhao ◽  
Yuanning Liu

Traditional machine learning methods are widely used in the field of RNA secondary structure prediction and have achieved good results. However, with the emergence of large-scale data, deep learning methods have more advantages than traditional machine learning methods. As the number of network layers increases in deep learning, there will often be problems such as increased parameters and overfitting. We used two deep learning models, GoogLeNet and TCN, to predict RNA secondary results. And from the perspective of the depth and width of the network, improvements are made based on the neural network model, which can effectively improve the computational efficiency while extracting more feature information. We process the existing real RNA data through experiments, use deep learning models to extract useful features from a large amount of RNA sequence data and structure data, and then predict the extracted features to obtain each base’s pairing probability. The characteristics of RNA secondary structure and dynamic programming methods are used to process the base prediction results, and the structure with the largest sum of the probability of each base pairing is obtained, and this structure will be used as the optimal RNA secondary structure. We, respectively, evaluated GoogLeNet and TCN models based on 5sRNA, tRNA data, and tmRNA data, and compared them with other standard prediction algorithms. The sensitivity and specificity of the GoogLeNet model on the 5sRNA and tRNA data sets are about 16% higher than the best prediction results in other algorithms. The sensitivity and specificity of the GoogLeNet model on the tmRNA dataset are about 9% higher than the best prediction results in other algorithms. As deep learning algorithms’ performance is related to the size of the data set, as the scale of RNA data continues to expand, the prediction accuracy of deep learning methods for RNA secondary structure will continue to improve.


Author(s):  
Bing Xu

In the process of e-commerce transactions, a large amount of data will be generated, whose effective classification is one of current research hotspots. An improved feature selection method was proposed based on the characteristics of Bayesian classification algorithm. Due to the long training and testing time of modern large-scale data classification on a single computer, a data classification algorithm based on Naive Bayes was designed and implemented on the Hadoop distributed platform. The experimental results showed that the improved algorithm could effectively improve the accuracy of classification, and the designed parallel Bayesian data classification algorithm had high efficiency, which was suitable for the processing and analysis of massive data.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yang Liu ◽  
Xiang Li ◽  
Xianbang Chen ◽  
Xi Wang ◽  
Huaqiang Li

Currently, data classification is one of the most important ways to analysis data. However, along with the development of data collection, transmission, and storage technologies, the scale of the data has been sharply increased. Additionally, due to multiple classes and imbalanced data distribution in the dataset, the class imbalance issue is also gradually highlighted. The traditional machine learning algorithms lack of abilities for handling the aforementioned issues so that the classification efficiency and precision may be significantly impacted. Therefore, this paper presents an improved artificial neural network in enabling the high-performance classification for the imbalanced large volume data. Firstly, the Borderline-SMOTE (synthetic minority oversampling technique) algorithm is employed to balance the training dataset, which potentially aims at improving the training of the back propagation neural network (BPNN), and then, zero-mean, batch-normalization, and rectified linear unit (ReLU) are further employed to optimize the input layer and hidden layers of BPNN. At last, the ensemble learning-based parallelization of the improved BPNN is implemented using the Hadoop framework. Positive conclusions can be summarized according to the experimental results. Benefitting from Borderline-SMOTE, the imbalanced training dataset can be balanced, which improves the training performance and the classification accuracy. The improvements for the input layer and hidden layer also enhance the training performances in terms of convergence. The parallelization and the ensemble learning techniques enable BPNN to implement the high-performance large-scale data classification. The experimental results show the effectiveness of the presented classification algorithm.


2019 ◽  
Vol 52 (1) ◽  
pp. 77-124 ◽  
Author(s):  
Giang Nguyen ◽  
Stefan Dlugolinsky ◽  
Martin Bobák ◽  
Viet Tran ◽  
Álvaro López García ◽  
...  

2021 ◽  
Author(s):  
Noah F. Greenwald ◽  
Geneva Miller ◽  
Erick Moen ◽  
Alex Kong ◽  
Adam Kagel ◽  
...  

AbstractUnderstanding the spatial organization of tissues is of critical importance for both basic and translational research. While recent advances in tissue imaging are opening an exciting new window into the biology of human tissues, interpreting the data that they create is a significant computational challenge. Cell segmentation, the task of uniquely identifying each cell in an image, remains a substantial barrier for tissue imaging, as existing approaches are inaccurate or require a substantial amount of manual curation to yield useful results. Here, we addressed the problem of cell segmentation in tissue imaging data through large-scale data annotation and deep learning. We constructed TissueNet, an image dataset containing >1 million paired whole-cell and nuclear annotations for tissue images from nine organs and six imaging platforms. We created Mesmer, a deep learning-enabled segmentation algorithm trained on TissueNet that performs nuclear and whole-cell segmentation in tissue imaging data. We demonstrated that Mesmer has better speed and accuracy than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance for whole-cell segmentation. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We further showed that Mesmer could be adapted to harness cell lineage information present in highly multiplexed datasets. We used this enhanced version to quantify cell morphology changes during human gestation. All underlying code and models are released with permissive licenses as a community resource.


Sign in / Sign up

Export Citation Format

Share Document