scholarly journals Temporal monitoring of Ghamu bar glacial lakes using remote sensing and GIS

2019 ◽  
Vol 7 (1) ◽  
pp. 18
Author(s):  
Alamgeer Hussain ◽  
Dilshad Bano

The trends of glacial lakes formation and glacial lake outburst flooding events have been increased across Himalayan Karakorum Hindu Kush (HKH) ranges during last decade due to increase in global warming. This research is addressing the temporal monitoring of ghamu bar glacial lakes using remote sensing and GIS. Landsat images of 1990, 2000, 2010 and 2015 were used to map temporal glacial lakes using normalized difference water index (NDWI) index. The results of normalized difference water index were validated through modified normalized difference water index and field photographs. Temporal variability shows that, glacier lake area has been increase from 1990 to 2015. In 1990 total area of lake was 0.052 sq, which further increased 0.0423 in 1995 than it decreases to 0.314 in 2000 due to detached of debris cover moraine from glacier tongue and it reach 0.0846 sq.km in 2005. The area gradually increased up to 0.1296 sq.km in 2010 and it goes up to 0.157 sq.km 2015. The overall increase in area are expanding at an accelerated rate in past two decades, indicating that Darkut glacier is more vulnerable toward climate change through increase in size and volume ofghamu bar glacial lakes. There is need for vigilance in monitoring of ghamu bar glacial lake through high resolution remote sensing data and development of Geo-database enabling more details about past and future lakes behaviors toward climate change impacts.    

2021 ◽  
Vol 13 (19) ◽  
pp. 3903
Author(s):  
Yingzheng Wang ◽  
Jia Li ◽  
Lixin Wu ◽  
Lei Guo ◽  
Jun Hu ◽  
...  

The continuous melting of valley glaciers can impact the water levels of glacial lakes and create glacial lake outburst floods (GLOFs). The Xixabangma massif is one of the most populated areas in the Himalayas and has suffered from multiple GLOFs. To estimate the glacier melting rate in the past four decades and analyze the outburst risk of glacial lakes in the Xixabangma massif, we determined changes in glacier mass balance, glacier area and glacial lake area based on KH-9 images, TanDEM-X images, Landsat images, SRTM DEM and ICESat-2 elevations. Our results show that, from 1974 to 2018, the total glacier area shrank from 954.01 km2 to 752.46 km2, whereas the total glacial lake area grew from 20.90 km2 to 38.71 km2. From 1974 to 2000, 2000 to 2013 and 2013 to 2018, the region-wide glacier mass balance values were −0.16 m w.e./a, −0.31 m w.e./a and −0.29 m w.e./a, respectively. Three glacial lakes, named Gangxico, Galongco and Jialongco, respectively, expanded by 127.14%, 373.45% and 436.36% from 1974 to 2018, and the mass loss rates of their parent glaciers from 2000 to 2013 increased by 81.72%, 122.22% and 160.00% relative to those during 1974 to 2000. The dams of these three lakes are unstable, and their drainage valleys directly connect to a major town and its infrastructure. Due to current high-water levels, possible external events such as ice collapse, landslide, heavy rainfall and earthquakes can easily trigger GLOFs. Hence, we deemed that the Gangxico, Galongco and Jialongco glacial lakes are dangerous and require special attention.


2018 ◽  
Vol 63 ◽  
pp. 00017
Author(s):  
Michał Lupa ◽  
Katarzyna Adamek ◽  
Renata Stypień ◽  
Wojciech Sarlej

The study examines how LANDSAT images can be used to monitor inland surface water quality effectively by using correlations between various indicators. Wigry lake (area 21.7 km2) was selected for the study as an example. The study uses images acquired in the years 1990–2016. Analysis was performed on data from 35 months and seven water condition indicators were analyzed: turbidity, Secchi disc depth, Dissolved Organic Material (DOM), chlorophyll-a, Modified Normalized Difference Water Index (MNDWI), Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDVI). The analysis of results also took into consideration the main relationships described by the water circulation cycle. Based on the analysis of all indicators, clear trends describing a systematic improvement of water quality in Lake Wigry were observed.


Author(s):  
Thu Trang Hoang ◽  
Khoi Nguyen Dao ◽  
Loi Thi Pham ◽  
Hong Van Nguyen

The objective of this study was to analyze the changes of riverbanks in Ho Chi Minh City for the period 1989-2015 using remote sensing and GIS. Combination of Modified Normalized Difference Water Index (MNDWI) and thresholding method was used to extract the river bank based on the multi-temporal Landsat satellite images, including 12 Landsat 4-5 (TM) images and 2 Landsat 8 images in the period 1989-2015. Then, DSAS tool was used to calculate the change rates of river bank. The results showed that, the processes of erosion and accretion intertwined but most of the main riverbanks had erosion trend in the period 1989-2015. Specifically, the Long Tau River, Sai Gon River, Soai Rap River had erosion trends with a rate of about 10.44 m/year. The accretion process mainly occurred in Can Gio area, such as Dong Tranh river and Soai Rap river with a rate of 8.34 m/year. Evaluating the riverbank changes using multi-temporal remote sensing data may contribute an important reference to managing and protecting the riverbanks.


2020 ◽  
Author(s):  
Saurabh Kaushik ◽  
Pawan Kumar Joshi ◽  
Tejpal Singh ◽  
Anshuman Bhardwaj

<p>The Himalayan Cryosphere is imperative to the people of south and central Asia owing to its water availability, hydropower generation, environmental services, eco-tourism, and influences on overall economic development of the region. Additionally, this influences the energy balance of the earth and contributes significantly to the sea level rise. Therefore Himalayan Cryosphere remains center of attraction for scientific community.  Glacier dynamics, seasonal snow and glacial lakes are studied at various scales using a combination of remote sensing and field observations. The existing literature reveals heterogeneous behavior of Himalayan glaciers which is largely influenced by climate change, debris cover and presence of glacial lake at the terminus. There are very limited studies that attempt to comprehend glacier dynamics and lake expansion in the Eastern Himalayan region. Therefore the present study aims to demonstrate link between glacier dynamics and lake expansion of South Lhonak glacier which is situated in the northern Sikkim. Multitemporal remote sensing data (Landsat, 1979-2019) and climate data (1990-2017) observed at Gangtok meteorological station are used in the study. The results reveal that the lake has expanded with a rate of 0.026 km<sup>2</sup> yr<sup>-1</sup> during the last four decades. The preliminary results show strongly imbalanced state of glacier, as glacier has deglaciated (area and length), and surface flow velocity and ice thickness have reduced significantly. The statistical analysis (Mann Kendall and Sens slope) of climate data measured at Gangtok meteorological station shows an accelerated trend of mean maximum (0.031°C yr-1) and mean minimum (0.043°C yr-1) temperatures (95% confidence interval). Whereas, no significant trend in total annual precipitation was observed. Inference can be drawn from study that glacier slow down and retreat contribute significantly to the glacial lake expansion under the influence of climate change, such lake expansion pose anticipated risk of glacial lake outburst in the region.</p>


2012 ◽  
Vol 62 (3) ◽  
pp. 887-899 ◽  
Author(s):  
Sanjay K. Jain ◽  
Anil K. Lohani ◽  
R. D. Singh ◽  
Anju Chaudhary ◽  
L. N. Thakural

2020 ◽  
Vol 9 (5) ◽  
pp. 294
Author(s):  
Da Li ◽  
Donghui Shangguan ◽  
Muhammad Naveed Anjum

The China–Pakistan Economic Corridor (CPEC), a key hub for trade, is susceptible to glacial lake outburst floods. The distributions and types of glacial lakes in the CPEC are not well documented. In this study, cloud-free imagery acquired using the Landsat 8 Operational Land Imager during 2016–2018 was used to delineate the extent of glacial lakes in the mountainous terrain of the CPEC. In the study domain, 1341 glacial lakes (size ≥ 0.01 km2) with a total area of 109.76 ± 9.82 km2 were delineated through the normalized difference water index threshold method, slope analysis, and a manual rectification process. On the basis of the formation mechanisms and characteristics of glacial lakes, four major classes and eight subclasses of lakes were identified. In all, 492 blocked lakes (162 end moraine-dammed lakes, 17 lateral moraine-dammed lakes, 312 other moraine-dammed lakes, and 1 ice-blocked lake), 723 erosion lakes (123 cirque lakes and 600 other erosion lakes), 86 supraglacial lakes, and 40 other glacial lakes were identified. All lakes were distributed between 2220 and 5119 m a.s.l. At higher latitudes, the predominate lake type changed from moraine-related to erosion. From among the Gez, Taxkorgan, Hunza, Gilgit, and Indus basins, most glacial lakes were located in the Indus Basin. The number and area of glacial lakes were larger on the southern slopes of the Karakoram range.


Jalawaayu ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 57-77
Author(s):  
Nabin Gurung ◽  
Sudeep Thakuri ◽  
Raju Chauhan ◽  
Narayan Prasad Ghimire ◽  
Motilal Ghimire

Shrinkage of some of the glaciers has direct impacts on the formation and expansion of glacial lakes. Sudden glacial lake outburst floods (GLOFs) are a major threat to lives and livelihoods downstream as they can cause catastrophic damage. In this study, we present the dynamics of the Lower-Barun glacier and glacial lakes and their GLOF susceptibility. We used multi temporal Landsat and Sentinel satellite imagery and extracted the lake outlines using the Normalized Difference Water Index (NDWI) with manual post-correction while the glacier outline was digitized manually. Multi-criteria decision-based method was used to assess the GLOF susceptibility. For the estimation of peak discharge and failure time, an empirical model developed by Froelich (1995) was used. The surface area of the Lower-Barun glacial lake was increased by 86% in the last 40 yrs (from 1979 to 2018), with a mean increase of 0.0432 km2/yr. The shrinkage in the glacier area is around 0.49 km2/yr and has shrunk by 8% in the last four decades. The retreat of the Lower-Barun glacier was 0.20% per year in the last four decades. The susceptibility index was 0.94, which suggests that the lake is very highly susceptible to the GLOF. The peak discharge of 5768 m3/s is produced when the breach depth is 20 m and the entire water volume is released. Likewise, in the case of 15 m breach depth, the peak discharge of 4038 m3/s is formed. Breach depth scenario of 10 m, peak discharge of 2442 m3/s is produced and in case of breach depth of 5 m produces the peak discharge of 1034 m3/s. If GLOF occurs, it can exert disastrous impacts on the livelihood and infrastructure in the downstream. So, it is necessary to examine such lakes regularly and mitigation measures to lower the GLOF susceptibility should be emphasized.


Author(s):  
E. Panidi ◽  
I. Rykin ◽  
P. Kikin ◽  
A. Kolesnikov

Abstract. Our context research is conducted to investigate the possibility of common application of the remote sensing and ground-based monitoring data to detection and observation of the dynamics and change in climate and vegetation cover parameters. We applied the analysis of the annual graphs of Normalized Difference Water Index to estimate the length and time frames of growing seasons. Basing on previously gained results, we concluded that we can use the Index-based monitoring of growing season parameters as a relevant technique. We are working on automation of computations that can be applied to processing satellite imagery, computing Normalized Difference Water Index time series (in the forms of maps and annual graphs), and estimation of growing season parameters. As currently used data amounts are big (or up-to-big) geospatial data, we use the Google Earth Engine platform to process initial datasets. Our currently described experimental work incorporates investigation of the possibilities for integration of cloud computing data storage and processing with client-side data representation in universal desktop GISs. To ensure our study needs we developed a prototype of a QGIS plugin capable to run processing in GEE and represent results in QGIS.


Author(s):  
M. V. Peppa ◽  
S. B. Maharjan ◽  
S. P. Joshi ◽  
W. Xiao ◽  
J. P. Mills

Abstract. Himalayan glaciers have retreated rapidly in recent years. Resultant glacial lakes in the region pose potential catastrophic threats to downstream communities, especially under a changing climate. The potential for Glacial Lake Outburst Floods (GLOFs) has increased and studies have assessed the risks of those in Nepal and prioritised several glacial lakes for urgent and closer investigation. The risk posed by the Tsho Rolpa Glacial Lake is one of the most serious in Nepal. To investigate the feasibility of high-frequency monitoring of glacial lake evolution by remote sensing, this paper proposes a workflow for automated glacial lake boundary extraction and evolution using a time series of Sentinel optical imagery. The waterbody is segmented and vectorised using bimodal histograms from water indices. The vectorised lake boundary is validated against reference data extracted from rigorous contemporary unmanned aerial vehicle (UAV)-based photogrammetric survey. Lake boundaries were subsequently extracted at four different epochs to evaluate the evolution of the lake, especially at the glacier terminus. The final lake area was estimated at 1.61 km2, significantly larger than the areal extent last formally reported. A 0.99 m/day maximum, and a 0.45 m/day average, horizontal glacier retreat rates were estimated. The reported research has demonstrated the potential of remote sensing time series to monitor glacial lake evolution, which is particularly important for lakes in remote mountain regions that are otherwise difficult to access.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


Sign in / Sign up

Export Citation Format

Share Document