scholarly journals GLACIAL LAKE EVOLUTION BASED ON REMOTE SENSING TIME SERIES: A CASE STUDY OF TSHO ROLPA IN NEPAL

Author(s):  
M. V. Peppa ◽  
S. B. Maharjan ◽  
S. P. Joshi ◽  
W. Xiao ◽  
J. P. Mills

Abstract. Himalayan glaciers have retreated rapidly in recent years. Resultant glacial lakes in the region pose potential catastrophic threats to downstream communities, especially under a changing climate. The potential for Glacial Lake Outburst Floods (GLOFs) has increased and studies have assessed the risks of those in Nepal and prioritised several glacial lakes for urgent and closer investigation. The risk posed by the Tsho Rolpa Glacial Lake is one of the most serious in Nepal. To investigate the feasibility of high-frequency monitoring of glacial lake evolution by remote sensing, this paper proposes a workflow for automated glacial lake boundary extraction and evolution using a time series of Sentinel optical imagery. The waterbody is segmented and vectorised using bimodal histograms from water indices. The vectorised lake boundary is validated against reference data extracted from rigorous contemporary unmanned aerial vehicle (UAV)-based photogrammetric survey. Lake boundaries were subsequently extracted at four different epochs to evaluate the evolution of the lake, especially at the glacier terminus. The final lake area was estimated at 1.61 km2, significantly larger than the areal extent last formally reported. A 0.99 m/day maximum, and a 0.45 m/day average, horizontal glacier retreat rates were estimated. The reported research has demonstrated the potential of remote sensing time series to monitor glacial lake evolution, which is particularly important for lakes in remote mountain regions that are otherwise difficult to access.

2021 ◽  
Vol 25 (11) ◽  
pp. 5879-5903
Author(s):  
Pengcheng Su ◽  
Jingjing Liu ◽  
Yong Li ◽  
Wei Liu ◽  
Yang Wang ◽  
...  

Abstract. The Poiqu River basin is an area of concentration for glaciers and glacial lakes in the central Himalayas, where 147 glacial lakes were identified, based on perennial remote sensing images, with lake area ranging from 0.0002 to 5.5 km2 – a total of 19.89 km2. Since 2004, the retreat rate of glacier has reached as high as 5.0 km2 a−1, while the growth rate of glacial lake has reached 0.24 km2 a−1. We take five typical lakes as our case study and find that the retreat of glacier area reaches 31.2 %, while the glacial lake area has expanded by 166 %. Moreover, we reconstruct the topography of the lake basin to calculate the water capacity and propose a water balance equation (WBE) to explore the lake evolution. By applying the WBE to the five lakes, we calculate the water supplies of the last few years and compare this with the results of field surveys, which are in agreement, within an error of only 1.86 % on average. The WBE also reveals that the water supplies to the lake depend strongly on the altitude. Lakes at low altitudes are supplied by glacier melting, and lakes at high altitudes are supplied by snowmelts. The WBE is not only applicable for predicting future changes in glacial lakes under climate warming conditions but is also useful for assessing water resources from rivers in the central Himalayas.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sonam Rinzin ◽  
Guoqing Zhang ◽  
Sonam Wangchuk

Against the background of climate change-induced glacier melting, numerous glacial lakes are formed across high mountain areas worldwide. Existing glacial lake inventories, chiefly created using Landsat satellite imagery, mainly relate to 1990 onwards and relatively long (decadal) temporal scales. Moreover, there is a lack of robust information on the expansion and the GLOF hazard status of glacial lakes in the Bhutan Himalaya. We mapped Bhutanese glacial lakes from the 1960s to 2020, and used these data to determine their distribution patterns, expansion behavior, and GLOF hazard status. 2,187 glacial lakes (corresponding to 130.19 ± 2.09 km2) were mapped from high spatial resolution (1.82–7.62 m), Corona KH-4 images from the 1960s. Using the Sentinel-2 (10 m) and Sentinel-1 (20 m × 22 m), we mapped 2,553 (151.81 ± 7.76 km2), 2,566 (152.64 ± 7.83 km2), 2,572 (153.94 ± 7.83 km2), 2,569 (153.97 ± 7.79 km2) and 2,574 (156.63 ± 7.95 km2) glacial lakes in 2016, 2017, 2018, 2019 and 2020, respectively. The glacier-fed lakes were mainly present in the Phochu (22.63%) and the Kurichu (20.66%) basins. A total of 157 glacier-fed lakes have changed into non-glacier-fed lakes over the 60 years of lake evolution. Glacier-connected lakes (which constitutes 42.25% of the total glacier-fed lake) area growth accounted for 75.4% of the total expansion, reaffirming the dominant role of glacier-melt water in expanding glacial lakes. Between 2016 and 2020, 19 (4.82 km2) new glacial lakes were formed with an average annual expansion rate of 0.96 km2 per year. We identified 31 lakes with a very-high and 34 with high GLOF hazard levels. These very-high to high GLOF hazard lakes were primarily located in the Phochu, Kurichu, Drangmechu, and Mochu basins. We concluded that the increasing glacier melt is the main driver of glacial lake expansion. Our results imply that extending glacial lakes studies back to the 1960s provides new insights on glacial lake evolution from glacier-fed lakes to non-glacier-fed lakes. Additionally, we reaffirmed the capacity of Sentinel-1 and Sentinel-2 data to determine annual glacial lake changes. The results from this study can be a valuable basis for future glacial lake monitoring and prioritizing limited resources for GLOF mitigation programs.


2019 ◽  
Vol 7 (1) ◽  
pp. 18
Author(s):  
Alamgeer Hussain ◽  
Dilshad Bano

The trends of glacial lakes formation and glacial lake outburst flooding events have been increased across Himalayan Karakorum Hindu Kush (HKH) ranges during last decade due to increase in global warming. This research is addressing the temporal monitoring of ghamu bar glacial lakes using remote sensing and GIS. Landsat images of 1990, 2000, 2010 and 2015 were used to map temporal glacial lakes using normalized difference water index (NDWI) index. The results of normalized difference water index were validated through modified normalized difference water index and field photographs. Temporal variability shows that, glacier lake area has been increase from 1990 to 2015. In 1990 total area of lake was 0.052 sq, which further increased 0.0423 in 1995 than it decreases to 0.314 in 2000 due to detached of debris cover moraine from glacier tongue and it reach 0.0846 sq.km in 2005. The area gradually increased up to 0.1296 sq.km in 2010 and it goes up to 0.157 sq.km 2015. The overall increase in area are expanding at an accelerated rate in past two decades, indicating that Darkut glacier is more vulnerable toward climate change through increase in size and volume ofghamu bar glacial lakes. There is need for vigilance in monitoring of ghamu bar glacial lake through high resolution remote sensing data and development of Geo-database enabling more details about past and future lakes behaviors toward climate change impacts.    


2013 ◽  
Vol 12 ◽  
pp. 10-16
Author(s):  
P Yagol ◽  
A Manandhar ◽  
P Ghimire ◽  
RB Kayastha ◽  
JR Joshi

In past Nepal has encountered a number of glacial lake outburst flood (GLOF) events causing loss of billions of rupees. Still there are a number of glacial lakes forming and there are chances of new glacial lake formation. Hence there is intense need to monitor glaciers and glacial lakes. The development on remote sensing technology has eased the researches on glacier and glacial lakes. Identification of locations of potential glacial lakes through the use of remote sensing technology has been proven and hence is opted for identification of locations of potential glacial lake in Khumbu Valley of Sagarmatha Zone, Nepal. The probable sites for glacial lake formation are at Ngojumpa, Lobuche, Khumbu, Bhotekoshi, Inkhu, Kyasar, Lumsumna, etc. As per study, the biggest glacial lake could form at Ngozumpa glacier. Even in other glaciers potential supra-glacial lakes could merge together to form lakes that occupy significant area. Nepalese Journal on Geoinformatics -12, 2070 (2013AD): 10-16


2015 ◽  
Vol 3 (4) ◽  
pp. 559-575 ◽  
Author(s):  
S. J. Cook ◽  
D. J. Quincey

Abstract. Supraglacial, moraine-dammed and ice-dammed lakes represent a potential glacial lake outburst flood (GLOF) threat to downstream communities in many mountain regions. This has motivated the development of empirical relationships to predict lake volume given a measurement of lake surface area obtained from satellite imagery. Such relationships are based on the notion that lake depth, area and volume scale predictably. We critically evaluate the performance of these existing empirical relationships by examining a global database of glacial lake depths, areas and volumes. Results show that lake area and depth are not always well correlated (r2 = 0.38) and that although lake volume and area are well correlated (r2 = 0.91), and indeed are auto-correlated, there are distinct outliers in the data set. These outliers represent situations where it may not be appropriate to apply existing empirical relationships to predict lake volume and include growing supraglacial lakes, glaciers that recede into basins with complex overdeepened morphologies or that have been deepened by intense erosion and lakes formed where glaciers advance across and block a main trunk valley. We use the compiled data set to develop a conceptual model of how the volumes of supraglacial ponds and lakes, moraine-dammed lakes and ice-dammed lakes should be expected to evolve with increasing area. Although a large amount of bathymetric data exist for moraine-dammed and ice-dammed lakes, we suggest that further measurements of growing supraglacial ponds and lakes are needed to better understand their development.


Sign in / Sign up

Export Citation Format

Share Document