scholarly journals Maple leaf shaped array antenna for multiband applications

2017 ◽  
Vol 7 (1.1) ◽  
pp. 494
Author(s):  
M Vasujadevi ◽  
B T P Madhav ◽  
A Shiva Skandan ◽  
P Rajeswari ◽  
K Arjun Rao ◽  
...  

This article presents design and analysis of maple leaf shaped array antenna for high gain applications. The proposed antenna is characterized and analyzed using ANSYS EM desktop 17. This antenna works at 2.17-2.54(S band),5.3-5.64, 6.91-7.80(C Band), 8.76-9.15(X band), 12.49-12.75, 14.78-16.65(Ku band). The bands of the proposed antenna has its applications at LTE 2.3 GHz, ISM 2.4 GHz, WLAN, ISM, Bluetooth at S-band and upper WLAN at C-band, Military applications and air traffic control at X-band. This single antenna dimensioned 21x18x1.6 mm³ is later arrayed in 1x4. This antenna has peak gain at 7.8dB and the average gain of 4.2dB. The proposed 1x4 array antenna is characterized and obtained return loss, gain, E field, current distribution and far field radiation patterns.

2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Bo Han ◽  
Shibing Wang ◽  
Jia Zhao ◽  
Xiaofeng Shi

A novel planar Yagi antenna printed on a microwave substrate with dielectric constant of 3.55 for Ku band applications has been presented in this paper. The proposed antenna has been fed by the slow-wave half-mode substrate-integrated waveguide and has achieved good characteristics, such as reduced size, high gain, broadband, and low insertion loss. The proposed antenna has been fabricated by Rogers 4350 substrate with lengths of two arms for dipole 0.46 λ0. Measured results indicate that the impedance bandwidth (below −10 dB return loss) is from 15.4 GHz to 19.4 GHz with peak gain 7.49 dBi. Both simulations and experiments convince that the proposed antenna could have reliable applications for Ku band wireless communications.


MAPAN ◽  
2021 ◽  
Author(s):  
Aman Dahiya ◽  
Rohit Anand ◽  
Nidhi Sindhwani ◽  
Dhirendra Kumar
Keyword(s):  
X Band ◽  
Ku Band ◽  

Author(s):  
Xiangxiang Li ◽  
Zucun Zhang ◽  
Kerong Xu ◽  
Yeqiang Li ◽  
Lei Sang ◽  
...  
Keyword(s):  

2016 ◽  
Vol 2016 ◽  
pp. 1-15
Author(s):  
Yun Hao ◽  
Haomeng Tong ◽  
Xihong Ye

A circularly polarized (CP) Microstrip Yagi array antenna (MSYA) is designed in order to achieve high front-to-back ratioR(F/B)and high gain over wide range in the forward radiation space. A Wilkinson power divider owning two output ways with the same magnitude and different phase is used to feed the antenna. Parametric studies are carried out to investigate the effects of some key geometrical sizes on the antenna’s performance. A prototype of the antenna is fabricated, and good agreement between the measured results and the numerical simulations is observed. The overlap bandwidth of VSWR ≤ 1.5 and AR ≤ 3 dB is about 11%. The steering angle (α) between the peak gain direction and the broadside can achieve 35°,R(F/B)reaches 19 dB, and the gain at the front point (G0) is only 4.3 dB lower than the maximum gain (Gm). The antenna has a wide beamwidth CP radiation pattern over wide spatial range including 0° ≤θ≤ 90° in vertical plane and −35° ≤φ≤ 55° in horizontal plane.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Juhua Liu ◽  
Yue Kang ◽  
Jie Chen ◽  
Yunliang Long

A new kind of Yagi array of quarter-wave patch antennas is presented. The Yagi array has a low profile, a wide bandwidth, and a high gain. A main beam close to endfire is produced, with a vertical polarization in the horizontal plane. A set of microstrip lines are introduced between the driven element and the first director element to enhance the coupling between them, and therefore the bandwidth could be increased and the back lobes could be suppressed. Measured results show that the Yagi array with 4 elements generates a peak gain of about 9.7 dBi, a front-to-back ratio higher than 10 dB, and a 10 dB return loss band from 4.68 GHz to 5.24 GHz, with a profile of 1.5 mm and an overall size of 80 × 100 mm2. An increase of the number of director elements would enhance the gain and have the main beam pointing closer to endfire.


Author(s):  
Manohar Golait ◽  
Manish Varun Yadav ◽  
Balasaheb H. Patil ◽  
Sudeep Baudha ◽  
Lokesh Kumar Bramhane

Abstract A compact ultra-wideband (UWB) square and circular slot ground plane planar antenna with a modified circular patch for UWB communication is presented. This antenna has a low reflection coefficient and high gain in the range of 8.94 GHz, starting from 2.85 to 11.79 GHz. The proposed antenna demonstrates UWB behavior with electrically small dimensions of 0.18 λ0×0.14 λ0×0.015 λ0 (λ0 is the free-space wavelength at 2.85 GHz). The fractional bandwidth of the antenna is 122.1%, with stable radiations. The antenna's maximum gain stands at 2.79 dBi, and the antenna's peak efficiency stands at 72%, respectively. It is lightweight, compact, and easy to manufacture. Hence, it can be used for the complete range of UWB applications and covers Wi-Max/WLAN/ X-Band and Ku-Band.


Frequenz ◽  
2020 ◽  
Vol 74 (7-8) ◽  
pp. 229-237
Author(s):  
Malaisamy K ◽  
Santhi M ◽  
Robinson S ◽  
Mohd Wasim ◽  
Murugapandiyan P

AbstractIn this paper, a cross dipole antenna is proposed, designed, and developed for satellite communication applications. The design incorporates an alternative feeding mechanism of the coaxial/probe feeding technique with balun. The primary objective of this paper is to develop the high gain antenna with an array configuration for satellite communication. The performance parameters of an antenna such as return loss, radiation pattern, gain and directivity are investigated for cross dipole antenna and 1 × 2, 1 × 4 array configurations. It operates for Ku band (12–18 GHz) and produces a high gain with low return loss. The proposed antenna has five useful bands and exhibits a peak directive gain of 13.21 dBi at 12.4 GHz with a bandwidth of 0.89 GHz. Additional bands are also offering a gain of 11.23 dBi with a bandwidth of 0.849 GHz at 10.6 GHz, 6.59 dBi with a bandwidth of 0.6 GHz at 11.5 GHz, 12.13 dBi with a bandwidth of 1.37 GHz at 14.2 GHz and 10.47 dBi with a bandwidth of 1.3 GHz at 15.8 GHz. The cross dipole antenna is analyzed for 1 × 2, 1 × 4 array configuration in order to improve the overall gain. The proposed antenna is fabricated on FR4 substrate with a dielectric constant of 4.4 and loss tangent (tan δ) of 0.007 with the thickness of 1.6 mm. The size of the proposed antenna is 72 × 84 mm. The proposed antenna meets the requirements of an antenna which is operating at Ku band; hence, it is found to be suitable for real time applications.


Sign in / Sign up

Export Citation Format

Share Document