Design and development of cross dipole antenna for satellite applications

Frequenz ◽  
2020 ◽  
Vol 74 (7-8) ◽  
pp. 229-237
Author(s):  
Malaisamy K ◽  
Santhi M ◽  
Robinson S ◽  
Mohd Wasim ◽  
Murugapandiyan P

AbstractIn this paper, a cross dipole antenna is proposed, designed, and developed for satellite communication applications. The design incorporates an alternative feeding mechanism of the coaxial/probe feeding technique with balun. The primary objective of this paper is to develop the high gain antenna with an array configuration for satellite communication. The performance parameters of an antenna such as return loss, radiation pattern, gain and directivity are investigated for cross dipole antenna and 1 × 2, 1 × 4 array configurations. It operates for Ku band (12–18 GHz) and produces a high gain with low return loss. The proposed antenna has five useful bands and exhibits a peak directive gain of 13.21 dBi at 12.4 GHz with a bandwidth of 0.89 GHz. Additional bands are also offering a gain of 11.23 dBi with a bandwidth of 0.849 GHz at 10.6 GHz, 6.59 dBi with a bandwidth of 0.6 GHz at 11.5 GHz, 12.13 dBi with a bandwidth of 1.37 GHz at 14.2 GHz and 10.47 dBi with a bandwidth of 1.3 GHz at 15.8 GHz. The cross dipole antenna is analyzed for 1 × 2, 1 × 4 array configuration in order to improve the overall gain. The proposed antenna is fabricated on FR4 substrate with a dielectric constant of 4.4 and loss tangent (tan δ) of 0.007 with the thickness of 1.6 mm. The size of the proposed antenna is 72 × 84 mm. The proposed antenna meets the requirements of an antenna which is operating at Ku band; hence, it is found to be suitable for real time applications.

2021 ◽  
Author(s):  
Malaisamy K ◽  
Santhi M ◽  
Robinson S ◽  
Wasim Mohd

Abstract This paper illustrates the design and development of the Series-fed Two Dipole Array antenna (STDA) for Wi-Fi applications. The proposed antenna consists of two dipole elements of different lengths, which are serially joined by the Coplanar Strip Line (CPS). The design incorporates an alternative feeding mechanism of coaxial/probe feeding technique with balun. The primary objective of this paper is to develop the high gain antenna with array configuration for Wi-Fi applications. The performance parameters of an antenna such as return loss, radiation pattern, gain and directivity are investigated for STDA array configurations. It operates at 2.4 GHz and produces a high gain of 21.6 dBi with reflector. The STDA antenna has been analyzed for different array configurations in the formation of 1×4, 1×8, 2×8 STDA array formation in order to improve the overall gain. The proposed antenna is fabricated an FR4 substrate with a dielectric constant of 4.4 and Loss tangent (tan δ) of 0.007 with the thickness of 1.6 mm. The size of an antenna is about 105 mm × 80 mm. The proposed antenna meets the requirements of an antenna which is operating at 2.4GHz with a bandwidth of 200 MHz; hence, it is found to be suitable for Wi-Fi applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Bo Han ◽  
Shibing Wang ◽  
Jia Zhao ◽  
Xiaofeng Shi

A novel planar Yagi antenna printed on a microwave substrate with dielectric constant of 3.55 for Ku band applications has been presented in this paper. The proposed antenna has been fed by the slow-wave half-mode substrate-integrated waveguide and has achieved good characteristics, such as reduced size, high gain, broadband, and low insertion loss. The proposed antenna has been fabricated by Rogers 4350 substrate with lengths of two arms for dipole 0.46 λ0. Measured results indicate that the impedance bandwidth (below −10 dB return loss) is from 15.4 GHz to 19.4 GHz with peak gain 7.49 dBi. Both simulations and experiments convince that the proposed antenna could have reliable applications for Ku band wireless communications.


2021 ◽  
Author(s):  
Lixia Yang ◽  
Hafiz Usman Tahseen ◽  
Syed Shah Irfan Hussain ◽  
Wang Hongjin

Abstract A triple-band ±45° dual-polarized dipole antenna is presented in this paper. The proposed antenna covers two bands from n77 and one from n79 5G NR frequency spectrums. The profile antenna exhibits the measured impedance bandwidths 3.6-3.85 GHz, 4.05-4.2 GHz and 4.8- 5.15 GHz with S11, S22 < - 15dB return loss. Antenna is fabricated with four substrates; one radiator, one reflector and two feeding baluns. Antenna is designed and optimized with HFSS simulator and fabricated for experimental verification. Antenna gives a stable radiation pattern with 8.55dBi high gain and 70° half power beam width (HPBW) that makes it a good candidate for wireless 5G sub-6 GHz and multiband base station applications. Finally, antenna is tested in a realistic application environment to show the utility of the proposed antenna for wireless sub-6 GHz IoT applications.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 494
Author(s):  
M Vasujadevi ◽  
B T P Madhav ◽  
A Shiva Skandan ◽  
P Rajeswari ◽  
K Arjun Rao ◽  
...  

This article presents design and analysis of maple leaf shaped array antenna for high gain applications. The proposed antenna is characterized and analyzed using ANSYS EM desktop 17. This antenna works at 2.17-2.54(S band),5.3-5.64, 6.91-7.80(C Band), 8.76-9.15(X band), 12.49-12.75, 14.78-16.65(Ku band). The bands of the proposed antenna has its applications at LTE 2.3 GHz, ISM 2.4 GHz, WLAN, ISM, Bluetooth at S-band and upper WLAN at C-band, Military applications and air traffic control at X-band. This single antenna dimensioned 21x18x1.6 mm³ is later arrayed in 1x4. This antenna has peak gain at 7.8dB and the average gain of 4.2dB. The proposed 1x4 array antenna is characterized and obtained return loss, gain, E field, current distribution and far field radiation patterns.


2017 ◽  
Vol 7 (1.5) ◽  
pp. 42
Author(s):  
I. Govardhani ◽  
M. Venkata Narayana ◽  
A. Navya ◽  
A. Venkatesh ◽  
S. Charles Spurjeon ◽  
...  

A compact dual band cross dipole antenna surrounded with metallic plates at five sides has been proposed in this article. comparative analysis has been done between the dipole and cross dipole antenna. On comparing these two antennas the proposed antenna has the high gain of 7db and radiation efficiency of 95 percent. The peak directivity of the proposed antenna is 5DB and its front to back ration is 60. The return loss, gain, radiation patterns and co polarization and cross polarization of the antenna has been observed and analysed using AN-soft HFSS v13.The proposed antenna works at the range of 0.6GHz to 1.5GHz which covers the applications like GSM, GNSS and some of the applications which covers in the range of UHF and VHF.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Chokri Baccouch ◽  
Chayma Bahhar ◽  
Hedi Sakli ◽  
Taoufik Aguili

The emergence of new IoT applications in regional and remote areas has increased the need for a global IoT connectivity beyond existing terrestrial network coverage. However, in many cases, it is not economically viable to build a dedicated terrestrial network to cover these remote areas due to population sparsity and the lack of business case. In this paper, we propose a framework for designing a solar rectenna for IoT-over-satellite applications using nanosatellites. Utilizing such a framework will allow valuable radio spectrum resources to be shared between satellite and terrestrial users. Thus, the autonomous power supply of these objects becomes a big challenge. Indeed, the harvest of solar energy and the conversion of RF energy into electric voltage are a hot topic. Our contribution consists in offering a solar rectenna system to collect solar and RF energy as well as the radio frequency transmission. A parametric study is carried out to follow the influence on the performance of this system. A topology of rectifying circuits is proposed in the present work. The parametric study has shown that the efficiency RF/DC conversion can reach 23.2% for an input power of 5 dBm and a load resistance of 2 k Ω . To ensure the satellite communication of IoT-connected autonomous objects, this system is operated in the X or Ku band.


Genetic Algorithm (GA) is proposed in this paper for the design of a wide bandwidth, high gain and directive CPW-fed slot-dipole antenna. The proposed antenna is built on a FR4 substrate that is cheap and easy to produce. Genetic Algorithm is used to select parameters that reflect antenna geometry to achieve wider bandwidth and reduced return loss (parameter S11) and high gain values at resonant frequency. The antenna design shows a wide operating bandwidth of 1.4 GHz (simulated) and 1.3 GHz (measured) over the X-band, a return loss (S11) of -25.83 dB (simulated) and -23.08 (measured) and a gain and directivity of 5.61 dB (simulated) and 11.87 dB (simulated) at 10.5 GHz resonating frequencies. In this work, all simulations were performed using the ANSYS HFSS v14.0 software. A prototype antenna was produced and then characterized using VNA to validate the design. Measurement results were in good agreement with the results simulated using ANSYS HFSS.


Author(s):  
Bokkisam Venkata Sai Sailaja ◽  
Ketavath Kumar Naik

Abstract In this paper, non-uniform meandered line shunt capacitive RF-MEMS switch is presented at an elliptical patch etched with a split-ring resonator (SRR) for satellite communication applications. The non-uniform meander line shunt capacitive is a fixed-fixed type of RF-MEMS switch that is introduced in this model antenna. The proposed antenna design is resonated at 10.46 GHz with the return loss of −37.6 dB. The performance evolution of the proposed antenna design is evaluated with and without integrated RF-MEMS switch on the proposed antenna SRR. It is observed that the proposed model at the ON-state switch resonates at 10.57 GHz frequency with the return loss of −30 dB. Similarly, at the OFF-state switch, it resonates at 10.53 GHz frequency with the return loss of −43 dB. Al3N4 (aluminum nitride) is used for the switch as a dielectric material, hence the switch attains higher isolation. The actuation voltage of 7.9 V is required for the switch to actuate from ON to OFF state. The switch attains minimum insertion and return loss which is discussed in further sections. The proposed antenna is fabricated and tested by a vector network analyzer; there is a good agreement between the simulated and measured results.


2021 ◽  
Author(s):  
Roghaye Ebadzadeh ◽  
Pejman Mohammadi ◽  
Mahdi Zavvari

Abstract This study presents the design of a reconfigurable c-shaped dipole antenna for Wi-Fi and LTE bands. It consists of two nested c-shape resonators located inside each of the wings of the c-dipole patch antennas. The mentioned resonators have been used due to their inductive and capacitive effects. The reconfigurable property of the proposed antenna has been achieved with two graphene layers which are deposited on two gaps over the patch antennas.The graphene layers adjust the return loss of the proposed antenna into the desired band. These graphene layers are examined with different chemical potentials, so that the antenna return loss changes over the. The simulation results show that the gain of the antenna is higher than 5dB for both LTE and Wi-Fi applications.


Sign in / Sign up

Export Citation Format

Share Document