vertical polarization
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 27)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Andrzej Magiera ◽  
Anjali Aggarwal ◽  
Vera Poncza

Abstract Various scenarios of measurements of Electric Dipole Moment (EDM) of light hadrons with the use of a storage ring were proposed. Most of these methods are based on the measurement of the vertical spin component for an initially horizontal polarized beam. Since the expected EDM effect is very small, one has to payattention to various sources of systematic uncertainties. One of the most important sources are misalignments of the magnets forming the storage ring lattice, which may produce an effect that mimics an EDM. This false signal could be much larger than the expected EDM signal, even for very small magnet misalignments. This paper describes a novel method for the determination of the contribution of magnets misalignments to the expected EDM signal. It is shown that the magnitude of this effect could be estimated via a Fourier analysis of the time-dependent vertical polarization. This could be achieved by sampling the vertical polarization with a frequency larger than the beam revolution frequency, which corresponds to polarization measurements in at least two positions in the storage ring. The presented method can be applied to any scenario proposed for EDM measurements using a storage ring.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012158
Author(s):  
M A Tumashov ◽  
J P del Risco ◽  
S B Glybovski ◽  
A D Sayanskiy ◽  
S A Kuznetsov ◽  
...  

Abstract We demonstrate and numerically characterize a set of single-layer metasurfaces based on capacitively-coupled bent metal strips deposited on a thin polypropylene film operating as band-stop filters at 139.1 GHz. Due to a high inter-digital coupling capacitance between neighboring inclusions formed by the strips, the resonance of the metasurface becomes highly sensitive to the incidence angle of a plane wave. At the same time, a narrow-band resonance is achieved by reducing the conductor length along the vertical polarization direction of the incident wave. We propose to use both properties for designing a sensor, which analyses the thickness of a thin slab of a known substance deposited over the structure by tracking the angle at which the minimum of transmission can be measured at a single frequency. We compare three versions of the proposed geometry by numerical calculation of the transmission coefficient depending on both the incidence angle and analyte slab’s thickness. We select the most suitable structure for sensing.


Author(s):  
V. G. Mashkov ◽  
V. A. Malyshev ◽  
P. A. Fedyunin

Introduction. Landing is the most challenging and dangerous part of the helicopter flight. The development of systems facilitating safe landing is a priority task for both Russian and foreign engineering companies. Landing on unprepared sites covered with snow and ice may be determined by the need to deliver cargo and ammunition in combat conditions, during search and rescue operations, evacuations of victims, etc.Aim. Development of a method for remote assessment of the snow and ice cover based on the results of oblique sensing of the underlying surface with a radio signal with vertical polarization.Materials and methods. In the MatLab environment, the authors conducted numerical simulations of Fresnel reflection coefficients of echo signals with vertical polarization in the 40–90 degree sensing range in the operating frequency range when solving the direct and inverse problem of reconstruction of the parameters of snow and ice layers.Results. Intervals of the Brewster angle values were obtained at which the value of the Fresnel reflection coefficient from the boundaries of the snow and ice cover takes minimal. Thus, was found to be – 47...55°, – 55...58° and – 58...61° for dry snow, dry firn and dry ice, respectively. The depth resolution when using an ultra-wideband LFM signal with a frequency from 2 to 8 GHz is about 4 cm. The methodological error in determining the dielectric permittivity of layers by the Brewster angle comprises not more than 3 %.Conclusion. The error in determining the relative permittivity and the depth of k layers under an increase in the RMS values of the noise level from 3.8 to 4.8 with a step of 0.1 for 100 implementations of each with a probability of 0.95 does not exceed 10 %, which confirms the validity of this method. The implementation of which allows you to automate the process of evaluating the possibility of a safe landing, thereby reducing the decision-making time and increasing the level of safety.


2020 ◽  
Author(s):  
Yuanhao He ◽  
Wei Mao ◽  
Ming Du ◽  
Ziling Peng ◽  
Haiyong Wang ◽  
...  

2020 ◽  
Vol 27 (6) ◽  
pp. 1494-1498
Author(s):  
Fayuan Zhang ◽  
Zhipeng Sun ◽  
Yuxi Qiao ◽  
Shan Qiao

Constructing vacuum-ultraviolet beamlines at synchrotron radiation facilities with giga-electron volt storage ring results in serious heat load on the beamlines which can reduce their performance. To solve this problem, an APPLE-Knot undulator with eight magnet rows has been built at the Shanghai Synchrotron Radiation Facility and has achieved very good performance. However, its performance in vertical polarization mode is imperfect. Here, a new configuration of a magnet-merged APPLE-Knot undulator that has achieved a better performance is reported.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1166
Author(s):  
Anastasios Koutinos ◽  
Georgia Xanthopoulou ◽  
George Kyriacou ◽  
Michael Chryssomallis

In this article a reconfigurable antenna for WLAN/WiMAX applications is presented. A super-shape radiator of an ellipsis shape is used to achieve wider intrinsic bandwidth compared to the classical rectangular patch antenna, while the dimensions remain comparable. The proposed antenna is fed at two points exciting both horizontal and vertical polarization but in different operating frequencies. To achieve wider bandwidth, as a whole but also for each polarization, the symmetrical feeding points for each excitation are also employed with a proper feeding network. PIN diodes are also used in the feeding network to provide the option of narrower bandwidth. The antenna substrate is Rogers RO4003C with dielectric constant εr = 3.55 and dissipation losses tanδ = 0.0027 with height h = 1.524 mm. The antenna operates in the range of 2.3 GHz to 2.55 GHz but, using the proposed procedure, it can be designed for different frequency ranges.


Sign in / Sign up

Export Citation Format

Share Document