scholarly journals FPKIN: Firewall Public Key Infrastructure for NEMO

2018 ◽  
Vol 7 (3.20) ◽  
pp. 422
Author(s):  
Amer Sami Hasan ◽  
Zaid Hashim Jaber

Network mobility (NEMO) is an important requirement for internet networks to reach the goal of ubiquitous connectivity. With NEMO basic support protocols, correspondent entities suffer from a number of limitations and problems that prevent route-optimization procedures to be established between the correspondent nodes and mobile network nodes associated with NEMO. The goal is to alleviate the signaling load and execute the route-optimization steps on behalf of the correspondent entities that are not sophisticated enough to support route optimization. This paper introduces a new architecture that uses firewall as a new entity with new mobility filtering rules and acts as root certificate server supporting PKI infrastructure. The PKI-firewall executes the route-optimization procedure on behalf of these correspondent entities depends on CA distributed to its mobile end nodes. User entities is reachable via optimized path approved by mobile node or user CA As a result of completing the above procedure, performance degradation will be reduced, especially when signaling storm occurs; applying these modifications will increase the security, availability and scalability of NEMO optimization and enable wider NEMO deployment. An analytical model is used to validate the new proposed framework and understand the behavior of this framework under different network scenarios. 

Author(s):  
Arun Prakash ◽  
Rajesh Verma ◽  
Rajeev Tripathi ◽  
Kshirasagar Naik

Network mobility (NEMO) route optimization support is strongly demanded in next generation networks; without route optimization the mobile network (e.g., a vehicle) tunnels all traffic to its Home Agent (HA). The mobility may cause the HA to be geographically distant from the mobile network, and the tunneling causes increased delay and overhead in the network. It becomes peculiar in the event of nesting of mobile networks due to pinball routing, for example, a Personal Area Network (PAN) inside a vehicle. The authors propose an Extended Mobile IPv6 route optimization (EMIP) scheme to enhance the performance of nested mobile networks in local and global mobility domain. The EMIP scheme is based on MIPv6 route optimization and the root Mobile Router (MR) performs all the route optimization tasks on behalf of all active Mobile Network Nodes (MNNs). Thus, the network movement remains transparent to sub MRs and MNNs and modifies only MRs and MNNs leaving other entities untouched and is more efficient than the Network Mobility Basic Support protocol (NEMO BS). The authors carried out an extensive simulation study to evaluate the performance of EMIP.


Author(s):  
Arun Prakash ◽  
Rajesh Verma ◽  
Rajeev Tripathi ◽  
Kshirasagar Naik

Network mobility (NEMO) route optimization support is strongly demanded in next generation networks; without route optimization the mobile network (e.g., a vehicle) tunnels all traffic to its Home Agent (HA). The mobility may cause the HA to be geographically distant from the mobile network, and the tunneling causes increased delay and overhead in the network. It becomes peculiar in the event of nesting of mobile networks due to pinball routing, for example, a Personal Area Network (PAN) inside a vehicle. The authors propose an Extended Mobile IPv6 route optimization (EMIP) scheme to enhance the performance of nested mobile networks in local and global mobility domain. The EMIP scheme is based on MIPv6 route optimization and the root Mobile Router (MR) performs all the route optimization tasks on behalf of all active Mobile Network Nodes (MNNs). Thus, the network movement remains transparent to sub MRs and MNNs and modifies only MRs and MNNs leaving other entities untouched and is more efficient than the Network Mobility Basic Support protocol (NEMO BS). The authors carried out an extensive simulation study to evaluate the performance of EMIP.


2014 ◽  
Vol 2014 ◽  
pp. 1-16
Author(s):  
Peer Azmat Shah ◽  
Halabi B. Hasbullah ◽  
Ibrahim A. Lawal ◽  
Abubakar Aminu Mu’azu ◽  
Low Tang Jung

Due to the proliferation of handheld mobile devices, multimedia applications like Voice over IP (VoIP), video conferencing, network music, and online gaming are gaining popularity in recent years. These applications are well known to be delay sensitive and resource demanding. The mobility of mobile devices, running these applications, across different networks causes delay and service disruption. Mobile IPv6 was proposed to provide mobility support to IPv6-based mobile nodes for continuous communication when they roam across different networks. However, the Route Optimization procedure in Mobile IPv6 involves the verification of mobile node’s reachability at the home address and at the care-of address (home test and care-of test) that results in higher handover delays and signalling overhead. This paper presents an enhanced procedure, time-based one-time password Route Optimization (TOTP-RO), for Mobile IPv6 Route Optimization that uses the concepts of shared secret Token, time based one-time password (TOTP) along with verification of the mobile node via direct communication and maintaining the status of correspondent node’s compatibility. The TOTP-RO was implemented in network simulator (NS-2) and an analytical analysis was also made. Analysis showed that TOTP-RO has lower handover delays, packet loss, and signalling overhead with an increased level of security as compared to the standard Mobile IPv6’s Return-Routability-based Route Optimization (RR-RO).


Author(s):  
Isac Gnanaraj J ◽  
Sriram .

One of emerging trends in the mobile network era is Network Mobility (NEMO). It was standardized by the Internet Engineering Task Force (IETF) and gained attention of the researchers because of research opportunities that it provides. Though it was developed based on MIPv6, there are few spots that must be analyzed and rectified, especially in the security aspects. According to the literatures, NEMO lacks in providing a robust Authentication, Authorization and Accounting (AAA) services to its users. AAA operations must be performed for all the players of the mobile network, because a hacker may reside at any place and try to access the mobile network by hiding behind valid or genuine nodes’ addresses. This research work aims to provide an AAA framework for NEMO by comprising three different mechanisms which are developed for Local Mobile Node (LMN), Visiting Mobile Node (VMN) and Mobile Router (MR). Simulation and performance analysis are done.


Author(s):  
Yick Hon Joseph So ◽  
Jidong Wang ◽  
Deddy Chandra

Mobile IP allows a mobile node to roam into a foreign IP network without losing its connection with its peer. Mobile IPv6 uses Route Optimization to improve the routing performance by avoiding the triangle routing problem and adopting Return Routability as a secure process for binding update. Host Identity Protocol (HIP) is an experimental security protocol which provides mobility management and multi-homing with new namespace. HIP has a similar architecture to the Mobile IP with Route Optimization. In this paper, we introduce a Secure Mobile IP with HIP Style Handshaking and Readdressing (SMIP), which provides stronger security, better performance and lower binding cost than Mobile IPv6 does in binding update process. The dependency of the home agent in the new scheme is dramatically decreased. The initiated scheme integrates the primary features of two completely different mobility management solutions and sets up a migration path from mobile-IP based solution to a public-key based solution in mobile IP networks.


Author(s):  
Sulata Mitra

This chapter develops the concept of route optimization in a multi-homed mobile network. In a future wireless network a user may have multiple mobile devices, each having multiple network interfaces and needing interconnection with each other as well as with other networks to form a mobile network. Such mobile networks may be multi-homed i.e. having multiple points of attachment to the Internet. It forwards packets of mobile network nodes inside it to Internet using suitable routes. But there may be multiple routes in a mobile network for forwarding packets of mobile network node. Moreover, the mobile network nodes inside a mobile network may have packets of different service types. So the optimal route selection inside a mobile network depending upon the service type of mobile network node is an important research issue. Two different route optimization schemes to create point to point network among mobile network nodes are elaborated in this chapter. This chapter is aimed at the researchers and the policy makers making them aware of the different means of efficient route selection in a multi-homed mobile network as well as understanding the problem areas that need further vigorous research.


2015 ◽  
Vol 2015 ◽  
pp. 1-14
Author(s):  
Ananthi Jebaseeli Samuelraj ◽  
Sundararajan Jayapal

Proxy Mobile IPV6 (PMIPV6) is a network based mobility management protocol which supports node’s mobility without the contribution from the respective mobile node. PMIPV6 is initially designed to support individual node mobility and it should be enhanced to support mobile network movement. NEMO-BSP is an existing protocol to support network mobility (NEMO) in PMIPV6 network. Due to the underlying differences in basic protocols, NEMO-BSP cannot be directly applied to PMIPV6 network. Mobility management signaling and data structures used for individual node’s mobility should be modified to support group nodes’ mobility management efficiently. Though a lot of research work is in progress to implement mobile network movement in PMIPV6, it is not yet standardized and each suffers with different shortcomings. This research work proposes modifications in NEMO-BSP and PMIPV6 to achieve NEMO support in PMIPV6. It mainly concentrates on optimizing the number and size of mobility signaling exchanged while mobile network or mobile network node changes its access point.


Sign in / Sign up

Export Citation Format

Share Document