scholarly journals Process Development for Bio-butanol Steam Reforming for PEMFC Application

2018 ◽  
Vol 7 (4.5) ◽  
pp. 110 ◽  
Author(s):  
Ronak Patel ◽  
Sanjay Patel

In current study, process has been developed for hydrogen production from bio-butanol via steam reforming (SR) for proton exchange membrane fuel cell (PEMFC) application. Heat integration with pinch analysis method was carried out to reduce overall heating and cooling utility requirement of energy intensive SR process. Despite of highly endothermic nature of bio-butanol SR, process found to be self-sustained in terms of requirement of heating utility. Heat integrated process for hydrogen production from bio-butanol SR was found to be green process, which can be explored for its hydrogen production capacity. 

2020 ◽  
Vol 141 ◽  
pp. 01009
Author(s):  
Lida Simasatitkul ◽  
Suksun Amornraksa ◽  
Natcha Wangprasert ◽  
Thanaporn Wongjirasavat

Proton exchange membrane fuel cell (PEMFC) is an interesting option for electricity generation. However, the usage of pure hydrogen feeding to PEMFC faces many problems such as high price and gas storage capacity. On-board fuel processor integrated with PEMFC is therefore a more preferable option. Two hydrogen production processes from crude ethanol feed, a by-product of fermentation of corn stover, integrated with PEMFC were developed and proposed. They are steam reforming (SR) process integrated with PEMFC and steam reforming process coupled with a CO preferential oxidation (COPROX) reactor with PEMFC. The results showed that the optimal operating conditions for both processes were similar i.e. S/F ratio of 9, WGS reactor temperature of 250oC and membrane area of 0.6 m2. However, the optimal SR temperature of both processes were different i.e. 500oC and 460oC. Both processes produced pure hydrogen gas at 0.53 mol/s. The energy requirement of the SR process alone was higher than SR process coupled with a COPROX about 0.19 MW. The produced hydrogen gas entered PEMFC at current density of 1.1 A cm-2, generating the power at of 0.44 W cm-2.


2021 ◽  
Vol 119 (12) ◽  
pp. 123903
Author(s):  
Xinrong Zhang ◽  
Wei Zhang ◽  
Weijing Yang ◽  
Wen Liu ◽  
Fanqi Min ◽  
...  

2017 ◽  
Vol 206 ◽  
pp. 608-616 ◽  
Author(s):  
Hoyoung Kim ◽  
Eunkyoung Hwang ◽  
Hyanjoo Park ◽  
Byung-Seok Lee ◽  
Jong Hyun Jang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document