Application of Finite Difference Time Domain to Calculate the Transmission Coefficient of an Electromagnetic Wave Impinging Perpendicularly on a Dielectric Interface with Modified MUR-I ABC

2012 ◽  
Vol 62 (4) ◽  
pp. 228-235 ◽  
Author(s):  
Biswajeet Mukherjee ◽  
Dinesh Vishwakarma
2015 ◽  
Vol 29 (12) ◽  
pp. 1550052 ◽  
Author(s):  
Ying-Jie Gao ◽  
Hong-Wei Yang ◽  
Rui Weng ◽  
Qing-Xia Niu ◽  
Yu-Jie Liu ◽  
...  

Compared with the traditional finite-difference time-domain (FDTD) method, the symplectic finite-difference time-domain (SFDTD) method has the characteristics of high precision and low dispersion. However, because the higher-order difference is necessary for the calculation, a large sparse matrix is generated. It causes that the computational time is relatively long and the memory is more. To solve this problem, the incomplete Cholesky conjugate gradient (ICCG) method for solving the large sparse matrix needs to be taken into the SFDTD differential equations. The ICCG method can accelerate the iterations of the numerical calculation and reduce the memory with fast and stable convergence speed. The new ICCG–SFDTD method, which has both the advantages of the ICCG method and SFDTD method, is proposed. In this paper, the ICCG–SFDTD method is used for research on the characteristic parameters of the plasma photonic crystals (PPCs) under different conditions, such as the reflection electric field and the transmission coefficient, to verify the feasibility and accuracy of this method. The results prove that the ICCG–SFDTD method is accurate and has some advantages.


2014 ◽  
Vol 568-570 ◽  
pp. 1749-1752
Author(s):  
Bing Kang Chen ◽  
Feng Guo

In order to study the reflection of electromagnetic wave in Lorentz media, A finite-difference time-domain method based on the auxiliary differential equation (ADE) technique is used to obtain the formulation of 2-D TM wave propagation in lossy Lorentz media. In 1-D case, the reflected coefficients calculated by ADE-FDTD method and exact theoretical result are excellent agreement. This expresses that the 2-D formulas of electromagnetic wave propagation in lossy Lorentz media are right. Furthermore, Plane wave reflected by Lorentz media layer is calculated and simulated. Results display that reflected effect is evident.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Julio L. Nicolini ◽  
José Ricardo Bergmann

Motivated by the emerging field of plasma antennas, electromagnetic wave propagation in and scattering by inhomogeneous plasma structures are studied through finite-difference time domain (FDTD) techniques. These techniques have been widely used in the past to study propagation near or through the ionosphere, and their extension to plasma devices such as antenna elements is a natural development. Simulation results in this work are validated with comparisons to solutions obtained by eigenfunction expansion techniques well supported by the literature and are shown to have an excellent agreement. The advantages of using FDTD simulations for this type of investigation are also outlined; in particular, FDTD simulations allow for field solutions to be developed at lower computational cost and greater resolution than equivalent eigenfunction methods for inhomogeneous plasmas and are applicable to arbitrary plasma properties such as spatially or time-varying inhomogeneities and collision frequencies, as well as allowing transient effects to be studied as the field solutions are obtained in the time domain.


Sign in / Sign up

Export Citation Format

Share Document