Numerical Simulation on Jet Formation of Shaped Charge with Different Liner Materials

2015 ◽  
Vol 65 (4) ◽  
pp. 279 ◽  
Author(s):  
Cheng Wang ◽  
Jianxu Ding ◽  
Haitao Zhao

<p>In this paper, the effect of liner material of the shaped charge on jet formation and its penetration capability is investigated by experimental and numerical methods. Liner materials investigated in this paper are copper, steel, and aluminium, respectively. Pulse X-ray photographic technology to shoot the formation of jet is employed to obtain the tip velocity and the diameter of jet. A two-dimensional multi-material code is designed to simulate the entire process from jet formation to penetrating a target. A markers on cell lines method is utilised to treat the multi-material interface. The results show that aluminium jet has the highest velocity with the poorest penetration capability. Copper jet has the strongest penetration capability with a velocity higher than that of steel jet, but lower than that of aluminium jet. The simulated results agree with the experimental results very well. It also indicates that the code developed can not only address large distortion problems but also track the variation of multi-material interfaces. It is favourable to simulate the explosive loading on thin-wall structure such as shaped charge. It is proved that authors’ method is feasible and reliable for optimising the structure of shaped charge jet to dramatically improve its tip velocity and penetration capability, and provides an important theoretic basis for designing high explosive anti-tank warhead.</p><p><strong>Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 279-286, DOI: http://dx.doi.org/10.14429/dsj.65.8648</strong></p>

2010 ◽  
Vol 148-149 ◽  
pp. 744-748 ◽  
Author(s):  
Yan Long Kang ◽  
Jian Wei Jiang ◽  
Shu You Wang ◽  
Jian Bing Men

This paper investigates the penetration performance of shaped charge against multi-layer target. A titanium alloy liner of shaped charge is proposed in order to obtain large perforated hole. Jet formation and penetrating into multi-layer target was calculated by hydro code AUTODYN. For different liner material include titanium alloy, mild steel and Cu, the explosion energy conversion, jet tip velocity and jet length, also the penetration performance are studied. It is found that the kinetic energy of jet is larger and the shape of jet is podgier when the liner material is titanium alloy, the perforated hole diameter on multi-layer improved 20% compare with the mild steel and Cu liner, the numerical simulation is good agreement to experimental results.


2014 ◽  
Vol 664 ◽  
pp. 128-137
Author(s):  
Kamal Guendouz ◽  
Ayoub Sayhi ◽  
Wang Cheng

In this work, the shaped charge jet formation depends on different parameters which can has effect on jet behavior such as jet velocity, breakup and penetration. Jet radius or liner thickness, shell thickness, liner material density, α angle and stand-off distance are evaluated in purpose to investigate their effect on performance of shaped charge jet velocity and jet breakup phenomena, also we investigate the effect of stand-off distance on shaped charge jet penetration into steel target. We also studied the performance of some protective shields materials in order to assure more protection for vehicle structure against shaped charge jet penetration. For that, different materials were used as armors such as: kevlar epoxy, polyethylene, glass epoxy, steel-1006 and Al2O3 ceramic. These protective shields were evaluated in order to show their performance against shaped charge penetration into target. To do so, adopted explicit dynamic analyzing program Autodyn basing on finite element were used to simulate shaped charge jet formation and penetration. Autodyn-2D simulationshighlight the efficiency of our work comparing with the experiments done in literature and Birkhoff’s theory. In other terms, increasing in shell thickness, alpha angle and liner densityenhance jet breakup time, protective shields layered armor of steel-1006, steel 1006 with polyethylene and steel-1006 with Al2O3ceramic give more protection for structure against shaped charge jet penetration comparing with others armors.


2011 ◽  
Vol 282-283 ◽  
pp. 650-653
Author(s):  
Zai Cheng Wang ◽  
Chun Lan Jiang ◽  
Ming Li

Based on the application of tandem weapon used to destroy concrete target this paper presents the results of simulation and experiment that investigate the penetration performance of shaped charge to runway. Jet formation and penetrating into multi-layer target was calculated by hydro code LS-DYNA3D. Jet tip velocity and jet length, also the penetration performance are studied. The damage performance of shaped charge is validated by experiment. The analysis demonstrates the shaped charge can create a big borehole for subsequent projectile to follow in.


Author(s):  
S Zaki ◽  
Emad Uddin ◽  
B Rashid ◽  
A Mubashar ◽  
Samiur R Shah

Shaped charges are used in many civilian and military applications. This study focuses on the effects of liner material and the type of explosive on the development of shaped charge jet. This was carried out by experimentation and numerical finite element-based modelling. Shaped charges were tested on a steel plate during the experimentation and the experimental data were used to validate the developed numerical model of the shaped charge. A hydrocode-based finite element model was able to predict the perforation and jet formation for the shaped charge, as well as the characteristics of the holes formed in the target plate. Several variations of the numerical model with the change of liner material and the filled explosive showed that the higher explosive resulted in higher velocity jet. The jet formation and velocity of jet were compared to determine the better performing combination of the material and explosive for the given shaped charge geometry. The underlying mechanisms were discussed in detail and compared with the previous studies.


1994 ◽  
Vol 76 (12) ◽  
pp. 7731-7740 ◽  
Author(s):  
J. P. Curtis ◽  
R. J. Kelly ◽  
K. G. Cowan

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Guangsong Ma ◽  
Guanglin He

To study the jet penetration capability of shaped charge warhead of guided ammunition, a variable cone angle-shaped charge liner was designed. LS-DYNA software is used to simulate the penetration capability of shaped charge warhead with three different metal materials (copper, steel, and aluminum). Numerical simulation results show that the velocity of the shaped charge jet formed by the three kinds of materials is v aluminum > v copper > v steel , and the residual velocity after penetration is V steel > V aluminum > V copper , the time when the jet starts to break is tcopper > tsteel > taluminum, and the penetration completion time is Tcopper < Taluminum < Tsteel; therefore, according to the numerical simulation results, copper was selected as the liner material, and the principle prototype is made for the experiment. The results of numerical simulation and experiment show that the shaped charge warhead with copper shaped charge liner has good penetration ability and after-effect damage ability to steel target after penetrating the guidance section, steering gear section, and control section.


Author(s):  
David W. Price ◽  
Ernest J. Harris ◽  
Frances G. Daykin

Abstract JeMMA, a set of relatively simple shaped-charge devices, has been designed in order to generate suitable data on jet formation, break-up and penetration for code validation purposes. The JeMMA Phase 1 device incorporated a copper liner and six of these shaped charges were manufactured as a technology demonstrator and fired in a special shaped charge facility in December 2016. The radiographic results obtained from the JeMMA Phase 1 and 2 devices, along with data reproducibility between trials, was excellent. This report gives an overview of the Phase 1 and 2 trials, including device design, the results of the firings conducted in Switzerland and details of the subsequent 2D and 3D hydrocode modelling carried out at AWE. The agreement between the data and both 2D and 3D modelling of the experiments is very pleasing, but highlights where further work is required. These JeMMA experiments will enhance the body of relevant data required to provide the validation of the hydrocode materials and modelling methodologies and enable us to better model the jetting threats of our experiments and have higher confidence in the results of the modelling.


Sign in / Sign up

Export Citation Format

Share Document