Fractional Differentiation-based Hybrid Active Contour Model for Noisy Image Segmentation

Author(s):  
Srikanth Khanna ◽  
Venkatachalam Chandrasekaran
Optik ◽  
2015 ◽  
Vol 126 (9-10) ◽  
pp. 1021-1026 ◽  
Author(s):  
Xiaomin Xie ◽  
Aijun Zhang ◽  
Changming Wang

Author(s):  
Guimei Zhang ◽  
Yangang Zhu ◽  
Jianxin Liu ◽  
YangQuan Chen

Intensity inhomogeneity or weak texture region image segmentation plays an important role in computer vision and image processing. RSF (Region-Scalable Fitting) active contour model has been proved to be an effective method to segment intensity inhomogeneity. However RSF model is sensitive to the initial location of evolution curve , it tends to fall into local optimal. Aiming at the problem, this paper proposed a new method for image segmentation based on fractional differentiation and RSF model. The proposed method adds the global Grünwald-Letnikov fractional gradient into the RSF model. Thus the gradient of the intensity inhomogeneity and weak texture regions is strengthened. As a result, both the robustness of initial location of evolution curve and efficiency of image segmentation are improved. Theoretical analysis and experimental results demonstrate that the proposed algorithm is capable of segmenting the intensity inhomogeneities and weak texture images. It is robust to curve initial location, furthermore the efficiency of segmentation is improved.


2021 ◽  
pp. 114811
Author(s):  
Aditi Joshi ◽  
Mohammed Saquib Khan ◽  
Asim Niaz ◽  
Farhan Akram ◽  
Hyun Chul Song ◽  
...  

2021 ◽  
pp. 1-19
Author(s):  
Maria Tamoor ◽  
Irfan Younas

Medical image segmentation is a key step to assist diagnosis of several diseases, and accuracy of a segmentation method is important for further treatments of different diseases. Different medical imaging modalities have different challenges such as intensity inhomogeneity, noise, low contrast, and ill-defined boundaries, which make automated segmentation a difficult task. To handle these issues, we propose a new fully automated method for medical image segmentation, which utilizes the advantages of thresholding and an active contour model. In this study, a Harris Hawks optimizer is applied to determine the optimal thresholding value, which is used to obtain the initial contour for segmentation. The obtained contour is further refined by using a spatially varying Gaussian kernel in the active contour model. The proposed method is then validated using a standard skin dataset (ISBI 2016), which consists of variable-sized lesions and different challenging artifacts, and a standard cardiac magnetic resonance dataset (ACDC, MICCAI 2017) with a wide spectrum of normal hearts, congenital heart diseases, and cardiac dysfunction. Experimental results show that the proposed method can effectively segment the region of interest and produce superior segmentation results for skin (overall Dice Score 0.90) and cardiac dataset (overall Dice Score 0.93), as compared to other state-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document