Preformance of an Electrobiochemical Slurry Reactor for the Treatment of a Soil Contaminated with Lindane

2013 ◽  
Vol 16 (3) ◽  
pp. 217-228 ◽  
Author(s):  
Beni Camacho-Pérez ◽  
Elvira Ríos-Leal ◽  
Omar Solorza-Feria ◽  
Pedro Alberto Vazquez-Landa ◽  
Josefina Barrera-Cortés ◽  
...  

Lindane is a chlorinated pesticide known for its toxicity and persistence in the environment. Recently, it has been proposed that soil microbial fuel cell technology (SMFC) could be applied to enhance the removal of organic matter, phenol, and petroleum hydrocarbon in contaminated soil with simultaneous electricity output. Yet, there is no information on the application to remediation of soils polluted with pesticides. The purpose of this research was to evaluate the biodegradation of lindane with simultaneous electricity generation in an electrobiochemical slurry reactor (EBCR). The EBCR was inoculated with a sulfate reducing inoculum acclimated to lindane, it was further characterized, and batch operated for 30 day at room temperature. No external carbon source was supplemented in the experiment 1; the substrate was the soluble natural organic matter (NOM) of the soil. In the experiment 2 the EBCR was supplemented with a stock solution of sucrose: sodium acetate: lactate to give a final concentration of 2g COD/L in the reactor. Results from electrochemical impedance spectroscopy characterization in the EBCR (Experiment 1) showed that the equivalent circuit had a high anodic resistance R1=2064 Ω, cathodic resistance R3 = 192 Ω; and electrolyte/membrane resistance R2 = 7?, totaling a relatively high overall internal resistance Rint of 2263 Ω. During the batch operation, the EBCR showed a 30% lindane removal efficiency along with a maximum volumetric power of 165 mW m-3.This value compared favorably with results corresponding to sediments microbial fuel cells that are used to power weather monitoring systems. The organic matter removal was very high (72% as soluble COD, NOM) whereas the coulombic efficiency was low (5.4%). The latter, although, was higher than values reported for microbial fuel cells that degraded leachate-like effluents. In Experiment 2 of the EBCR both cell characteristics and performance significantly improved. The internal resistance as determined by polarization curve was 102 Ω when the two-electrode sets were connected in parallel. During the batch operation, the EBCR showed a 78% lindane removal and a maximum power volumetric of 634 mW m-3, the organic matter removal was 76% and coulombic efficiency was 15%. Finally, it can be concluded that our EBCR showed a high lindane removal capability and mixing of the slurry phase was associated to improvement of bioremediation and electricity performances of the device.

2018 ◽  
Author(s):  
Peng Cheng ◽  
Rui Shan ◽  
Hao-Ran Yuan ◽  
Ge Dong ◽  
Li-fang Deng ◽  
...  

AbstractElectron transfer from microorganisms to the electrode is the key process in microbial fuel cells (MFCs). In this study, a trehalose lipid was added to a Rhodococcus pyridinivorans-inoculated MFC to improve the power output by enhancing electron transfer. Upon trehalose lipid addition, the current density and maximum power density were increased by 1.83 times and 5.93 times, respectively. Cyclic voltammetry analysis revealed that the addition of trehalose lipid increased the electron transfer performance, while electrochemical impedance spectroscopy results proved a decrease in internal resistance. Microscopy images showed that the trehalose lipid-treated bacteria interacted more closely with various fagellum-like contacts, while in the pure trehalose lipid (200 mg/L), pores were obviously observed in the cell surface.ImportanceImproving the power output of microbial fuel cells by the addition of bio-surfactants have been proved to be a novel method. However, only rhamnolipid and sophorolipid are certified to be effective. Trehalose lipid is a common material in cosmetic and bio-medicine industry. Our research broaden the application of bio-surfactant in MFC and preliminarily explain the mechanism.HighlightsTrehalose lipid enhanced MFC power generationTrehalose lipid decrease MFC internal resistancePores were observed with the addition of trehalose lipidAddition of bio-surfactant is a promising way to increase MFC performance


Author(s):  
Shuyao Wang ◽  
Ademola Adekunle ◽  
Boris Tartakovsky ◽  
Vijaya Raghavan

2017 ◽  
Vol 76 (12) ◽  
pp. 3269-3277 ◽  
Author(s):  
B. Neethu ◽  
M. M. Ghangrekar

Abstract Sediment microbial fuel cells (SMFCs) are bio-electrochemical devices generating electricity from redox gradients occurring across the sediment–water interface. Sediment microbial carbon-capture cell (SMCC), a modified SMFC, uses algae grown in the overlying water of sediment and is considered as a promising system for power generation along with algal cultivation. In this study, the performance of SMCC and SMFC was evaluated in terms of power generation, dissolved oxygen variations, sediment organic matter removal and algal growth. SMCC gave a maximum power density of 22.19 mW/m2, which was 3.65 times higher than the SMFC operated under similar conditions. Sediment organic matter removal efficiencies of 77.6 ± 2.1% and 61.0 ± 1.3% were obtained in SMCC and SMFC, respectively. With presence of algae at the cathode, a maximum chemical oxygen demand and total nitrogen removal efficiencies of 63.3 ± 2.3% (8th day) and 81.6 ± 1.2% (10th day), respectively, were observed. The system appears to be favorable from a resources utilization perspective as it does not depend on external aeration or membranes and utilizes algae and organic matter present in sediment for power generation. Thus, SMCC has proven its applicability for installation in an existing oxidation pond for sediment remediation, algae growth, carbon conversion and power generation, simultaneously.


2022 ◽  
pp. 283-296
Author(s):  
Daniela López ◽  
Thaís González ◽  
Gloria Gómez ◽  
Juan Pablo Miranda ◽  
José Contreras ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1803 ◽  
Author(s):  
Yuko Goto ◽  
Naoko Yoshida

Conventional aerobic treatment of swine wastewater, which generally contains 4500–8200 mg L−1 of organic matter, is energy-consuming. The aim of this study was to assess the application of scaled-up microbial fuel cells (MFCs) with different capacities (i.e., 1.5 L, 12 L, and 100 L) for removing organic matter from swine wastewater. The MFCs were single-chambered, consisting of an anode of microbially reduced graphene oxide (rGO) and an air-cathode of platinum-coated carbon cloth. The MFCs were polarized via an external resistance of 3–10 Ω for 40 days for the 1.5 L-MFC and 120 days for the 12L- and 100 L-MFC. The MFCs were operated in continuous flow mode (hydraulic retention time: 3–5 days). The 100 L-MFC achieved an average chemical oxygen demand (COD) removal efficiency of 52%, which corresponded to a COD removal rate of 530 mg L−1 d−1. Moreover, the 100 L-MFC showed an average and maximum electricity generation of 0.6 and 2.2 Wh m−3, respectively. Our findings suggest that MFCs can effectively be used for swine wastewater treatment coupled with the simultaneous generation of electricity.


Sign in / Sign up

Export Citation Format

Share Document