STUDY ON FLEXURAL BEHAVIOR OF RECYCLED AGGREGATE CONCRETE BEAMS USING GLASS FIBERS

Author(s):  
V. Bhikshma ◽  
K. Pradeep Kumar

In this work, an attempt is made to investigate the influence of the glass fiber on the natural and recycled aggregate concrete. Ten beams of size 1500 mm x150 mm x 230 mm were cast and curing was done for 28 days. The flexural behavior of beams is studied in the present work with glass fiber for recycled aggregate concrete. There was total of five batches of concrete mixes for the grade M30 for natural and recycled aggregate. The glass fibers were added in proportion by 0.50%, 1%, 1.5% and 2% by weight of cement. The load carrying capacity of specimens with 100% (RCA) with 2% fiber content is increased by 14% compared to that of 100% (RCA) with 0.5% fiber content. Compared to beam A (NCA) 0%fibre, the moment of beam E (RCA) at 2%fibre is decreased by 6%. The investigations indicated encouraging results for Recycled Aggregate Concrete (RAC) beams with glass fibers in all aspects, thus, pointing to recycled aggregate as potential alternative source of aggregate.

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1508
Author(s):  
Ali Raza ◽  
Ahmad Rashedi ◽  
Umer Rafique ◽  
Nazia Hossain ◽  
Banjo Akinyemi ◽  
...  

Structural members comprising geopolymer recycled aggregate concrete (RAC) reinforced with glass fiber-reinforced polymer (GFRP) bars have not been investigated appropriately for axial compressive loading cases. The present study addresses this knowledge gap by evaluating the structural efficiency of GFRP-reinforced geopolymer recycled aggregate concrete (GGRAC)-based members subjected to axial compressive loading. A total of nine compressive members (250 mm in cross-section and 1150 mm in height) were constructed to examine the effect of the number of longitudinal GFRP bars and the vertical spacing of transverse GFRP hoops/ties. The experimental results portrayed that the ductility of GGRAC compressive members improved with the reduction in the pitch of GFRP hoops. The axial load-carrying capacity (LCC) of GGRAC compressive members increased by increasing the number of GFRP bars up to eight (corresponding to a reinforcement ratio of 2.11%) while it decreased by using ten longitudinal GFRP bars (corresponding to a reinforcement ratio of 2.65%). Additionally, an empirical model was suggested to predict the axial LCC of GGRAC compressive members based on a large amount of experimental data of similar members. The experimental results and related theoretical predictions substantially prove the applicability and accuracy of the proposed model. The proposed column represents a feasible structural member in terms of material availability and environmental sustainability.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhenghao Zou ◽  
Guojiao Yang ◽  
Tian Su

This paper presents the results of research on the flexural behavior of recycled aggregate concrete (RAC) beams. The correlation between flexural behavior and the corrosion level of longitudinal rebar was analysed. Based on theoretical analysis and experiment results, the influence of corrosion on flexural cracking moment was analysed and a model to predict the residual flexural capacity of RAC beams with corroded longitudinal rebars was established. The experimental results show that the development degree of cover cracks deepens with the increase of the corrosion level, and the experimental data also demonstrate that the strain distribution of concrete in the midspan of beams conforms to the plane section assumption better when the corrosion level is little but no longer satisfies the plane section assumption when the corrosion level is high.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yan Tan ◽  
Chenxu Zhou ◽  
Jinzhi Zhou

Steel fiber recycled aggregate concrete (SFRAC) is mainly used in roads, bridges, and railways that are subjected to bear wheel load. This paper presents a comparative experimental study on the flexural fatigue behavior of the SFRAC, the natural aggregate concrete (NAC), and the recycled aggregate concrete (RAC). The results show that, with the use of 1.0% volume fraction steel fiber, the flexural strength of SFRAC exceeds the flexural strength of NAC (around 0.3%), and the fatigue lives of RAC have been found to be lower by 19.9% and 53.4% compared to SFRAC at stress levels S = 0.9 and S = 0.7. The fatigue strain of SFRAC follows the three-stage law, and the fatigue strain of SFRAC develops more slowly than that of RAC at the same stress level. Two-parameter Weibull distribution is fitted to the test data to generate fatigue models at different survival probabilities, and fatigue life can be accurately predicted using the developed model. Therefore, it is feasible to replace the natural concrete with the recycled aggregate concrete with appropriate steel fiber content in some aspects, which is of great significance to green development.


Sign in / Sign up

Export Citation Format

Share Document