Experimental Investigation and Analytical Study on the Flexural Behavior of Reinforced Recycled Aggregate Concrete Beams

Author(s):  
Elhem Ghorbel ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhenghao Zou ◽  
Guojiao Yang ◽  
Tian Su

This paper presents the results of research on the flexural behavior of recycled aggregate concrete (RAC) beams. The correlation between flexural behavior and the corrosion level of longitudinal rebar was analysed. Based on theoretical analysis and experiment results, the influence of corrosion on flexural cracking moment was analysed and a model to predict the residual flexural capacity of RAC beams with corroded longitudinal rebars was established. The experimental results show that the development degree of cover cracks deepens with the increase of the corrosion level, and the experimental data also demonstrate that the strain distribution of concrete in the midspan of beams conforms to the plane section assumption better when the corrosion level is little but no longer satisfies the plane section assumption when the corrosion level is high.


2021 ◽  
pp. 136943322110262
Author(s):  
Haiyan Zhang ◽  
Keyue Wan ◽  
Bo Wu ◽  
Zhonghao Hu

Geopolymer recycled aggregate concrete (GRAC) is a new green construction material, which uses geopolymer as the binder and recycled concrete as aggregates. To compare the flexural performance of GRAC and ordinary recycled aggregate concrete (RAC) beams, static loading tests were conducted on seven GRAC beams and three RAC beams. The effects of the replacement ratio of recycled aggregates (RAs), the replacement patterns, and the reinforcement ratio on the flexural behavior of GRAC beams are evaluated. The test data show that the replacement ratio has no significant effect on the cracking pattern, failure mode, or bending capacity of GRAC beams, but the replacement pattern does have an effect. Under a given replacement ratio, replacing only the larger fraction of natural aggregates (NA) with RA improves the concrete strength and crack resistance of both RAC and GRAC beams, compared to that using same replacement percentage for all fractions. Due to the lower elastic modulus and strength of GRAC prepared in this study, the GRAC beams have lower height of neutral axis and greater deflection than RAC beams at the same load level and possess slightly lower cracking load, bending capacity, and ductility. The bending capacity of GRAC beams can be predicted by the formulas proposed for ordinary reinforced concrete beams in the Chinese code GB50010-2010, ACI 318-11, or BS EN 1992-1-1:2004 codes, but the safety margin is generally lower than that of ordinary reinforced concrete beams.


2012 ◽  
Vol 46 (6) ◽  
pp. 1045-1059 ◽  
Author(s):  
Ivan S. Ignjatović ◽  
Snežana B. Marinković ◽  
Zoran M. Mišković ◽  
Aleksandar R. Savić

2009 ◽  
Vol 21 (4) ◽  
pp. 431-439 ◽  
Author(s):  
Seon-Hwa Song ◽  
Ki-Sun Choi ◽  
Young-Chan You ◽  
Keung-Hwan Kim ◽  
Hyun-Do Yun

Sign in / Sign up

Export Citation Format

Share Document