COMBINED EXTRUSION OF GLASSES WITH A CONICAL BOTTOM. METHODOLOGY FOR CALCULATING TECHNOLOGICAL PARAMETERS OF THE TRADITIONAL FREE EXTRUSION PROCESS

Author(s):  
A. L. Vorontsov ◽  
D. A. Lebedeva

The method of calculating the energy-power and deformation parameters of the traditional process of free extrusion of glasses with a conical bottom part, including preliminary formation of the outer conical section of the bottom part of the product by molding and the following reverse extrusion of the glass with an internal cavity of the required geometry. The extrusion of both non-hardening and hardening material is considered. In the latter case, the account of the hardening of the extruded material is described in detail. The above formulas allow us to determine such important parameters of the stamping process as total and specific deforming force, maximum pressure on the die wall, and an increase in the yield stress.

Author(s):  
A. L. Vorontsov ◽  
D. A. Lebedeva

The methodology for calculating the energy-power and deformation parameters of the traditional process of constrained extrusion of glasses with a conical bottom part, including preliminary obtaining by molding the outer conical section of the bottom part of the product and the subsequent reverse extrusion of the glass with an internal cavity of the required geometry, is presented. The extrusion of both non-hardening and hardening material is considered. In the latter case, the account of the hardening of the extruded material is described in detail. The above formulas allow us to determine such important parameters of the stamping process as total and specific deforming force, maximum pressure on the die wall, and an increase in the yield stress.


Author(s):  
A. L. Vorontsov ◽  
D. A. Lebedeva

The methodology for calculating the energy-power and deformation parameters of the process of constrained extrusion of glasses with a conical bottom part, starting with the bend of the workpiece. The extrusion of both non-hardening and hardening material is considered. In the latter case, the account of the hardening of the extruded material is described in detail. The above formulas allow us to determine such important parameters of the stamping process as total and specific deforming force, maximum pressure on the die wall, and an increase in the yield stress.


Author(s):  
A. L. Vorontsov ◽  
I. A. Nikiforov

The methodology for calculating the energy and deformation parameters of the processes of free extrusion of glasses with a counter-punch is described. Extrusion of both non-hardening and hardening material is considered. In the latter case, accounting for the hardening of the extruded material is described in detail. The above formulas allow us to determine such important parameters of the stamping process as the total and specific deforming forces, maximum pressure on the matrix wall, and increase in yield stress.


Author(s):  
A. L. Vorontsov ◽  
I. A. Nikiforov

The method of calculating the energy and deformation parameters of the process of constrained extrusion of glasses with a counter-punch is described. Extrusion of both non-hardening and hardening material is considered. In the latter case, accounting for the hardening of the extruded material is described in detail. The above formulas allow us to determine such important parameters of the stamping process as the total and specific deforming forces, maximum pressure on the matrix wall, and increase in yield stress.


2020 ◽  
Vol 0 (5) ◽  
pp. 38-45
Author(s):  
A. L. Vorontsov ◽  
◽  
I. A. Nikiforov ◽  

The calculation methodology of the energy-power and strain parameters of free extrusion processes of cartridges with a counterpunch is presented. The extrusion of both non-hardening and hardening material is discussed. Taking into account the strengthening of extruded material is described in detail for a case of hardening material. The presented formulae allow one to determine such most important parameters of the pressing process as total and specific strain forces, maximum pressure on a die wall, an increase in yield load.


2020 ◽  
Vol 0 (6) ◽  
pp. 41-47
Author(s):  
A. L. Vorontsov ◽  
◽  
I. A. Nikiforov ◽  

The calculation methodology of the energy-power and strain parameters of a straitened extrusion process of cartridges with a counterpunch is presented. The extrusion of both non-hardening and hardening material is discussed. Taking into account of the strengthening of extruded material is described in detail for a case of hardening material. The presented formulae allow one to determine such most important parameters of the pressing process as total and specific strain forces, maximum pressure on a die wall, an increase in yield load.


2011 ◽  
Vol 189-193 ◽  
pp. 1778-1781 ◽  
Author(s):  
Gui Hua Liu ◽  
Yong Qiang Guo ◽  
Zhi Jiang

By using Deform-3D software, the necking extrusion forming processes of integer trailer axle with two different heating means which are Uniform Heating (UH) method and Partly Heating (PH) method with temperature gradient are simulated. The influence of deformation parameters such as friction factor, necking coefficient, different temperature distribution of work-piece on the material flow features, stress and strain field, loading force and deformation process are analyzed in detail. According to the numerical simulation results, using PH method with temperature gradient can improve necking deformation during tube extrusion process.


Author(s):  
A. L. Vorontsov ◽  
D. A. Lebedeva

All geometric formulas necessary for designing the process of extrusion of glasses with a conical bottom are obtained. Further, the obtained formulas will be used to develop scientifically based methods for calculating technological operations of free and constrained extrusion. The substantiation of the use of the wellknown methods of A. L. Vorontsov, developed for extrusion of glasses with a punch with a flat end, for calculating the deformed state of the workpiece is given.


Author(s):  
B.S. Moroz ◽  
M.G. Dudnik

The parameters of deformation degree at theoretical and experimental researches of cold backward extrusion processes of hollow glasses-type products are considered. The dependences of their relationship with the relative degree of deformation and the scale of their conformity are suggested. The published results of experimental and theoretical studies on the impact of technological parameters of the backward extrusion process of hollow products in the conditions of active friction forces to reduce the deformation force and stress-strain state of the billet are analyzed. Insuffi ciently studied features of the process and the possibility for expanding of the application fi eld of the backward extrusion method with the active action of friction forces are noted. The method for calculating of the deformation rate required to determine the current stress in the implementation of the hot backward extrusion process.


2019 ◽  
Vol 889 ◽  
pp. 155-160
Author(s):  
Trong Mai Nguyen ◽  
Đuc Quy Tran ◽  
Van Nghe Pham ◽  
Van Canh Nguyen

In this research work, the result of the effects of technological parameters on surface roughness in extrusion bars of aluminum alloy were pesented. The results of this study may be used for choosing optimal parameters of extrusion process so that surface quality of extruded bar was improved.


Sign in / Sign up

Export Citation Format

Share Document