Separation of Low Molecular Weight of Dye from Aqueous Solution Using the Prepared Nano-composite Hollow Fiber Membranes

2018 ◽  
Vol 28 (3) ◽  
pp. 180-186
Author(s):  
Cheol Oh Park ◽  
◽  
Sung Jae Lee ◽  
Ji Won Rhim
Membranes ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 143
Author(s):  
Lara Grünig ◽  
Ulrich A. Handge ◽  
Joachim Koll ◽  
Oliver Gronwald ◽  
Martin Weber ◽  
...  

In this study, a triblock copolymer was used as additive to fabricate new dual layer hollow fiber membranes with a hydrophilic active inner surface in order to improve their fouling resistance. The polymeric components of the solutions for membrane fabrication were poly(ether sulfone), poly(N-vinyl pyrrolidone), and the triblock copolymer. The additive consists of three blocks: a middle hydrophobic poly(ether sulfone) block and two outer hydrophilic alkyl poly(ethylene glycol) blocks. By varying the additive concentration in the solutions, it was possible to fabricate dual layer hollow fiber membranes that are characterized by a hydrophilic inner layer, a pure water permeance of over 1800 L/(m2 bar h) and a molecular weight cut-off of 100 kDa similar to commercial membranes. Contact angle and composition determination by XPS measurements revealed the hydrophilic character of the membranes, which improved with increasing additive concentration. Rheological, dynamic light scattering, transmission, and cloud point experiments elucidated the molecular interaction, precipitation, and spinning behavior of the solutions. The low-molecular weight additive reduces the solution viscosity and thus the average relaxation time. On the contrary, slow processes appear with increasing additive concentration in the scattering data. Furthermore, phase separation occurred at a lower non-solvent concentration and the precipitation time increased with increasing additive content. These effects revealed a coupling mechanism of the triblock copolymer with poly(N-vinyl pyrrolidone) in solution. The chosen process parameters as well as the additive solutions provide an easy and inexpensive way to create an antifouling protection layer in situ with established recipes of poly(ether sulfone) hollow fiber membranes. Therefore, the membranes are promising candidates for fast integration in the membrane industry.


2014 ◽  
Vol 471 ◽  
pp. 237-246 ◽  
Author(s):  
Naser Tavajohi Hassankiadeh ◽  
Zhaoliang Cui ◽  
Ji Hoon Kim ◽  
Dong Won Shin ◽  
Aldo Sanguineti ◽  
...  

2018 ◽  
Vol 25 (19) ◽  
pp. 19054-19064 ◽  
Author(s):  
Norfazilah Muhamad ◽  
Norfazliana Abdullah ◽  
Mukhlis A. Rahman ◽  
Khairul Hamimah Abas ◽  
Azian Abd Aziz ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 383
Author(s):  
Min Liu ◽  
Long-Bao Zhao ◽  
Li-Yun Yu ◽  
Yong-Ming Wei ◽  
Zhen-Liang Xu

A homologous series of hyperbranched polyesters (HBPEs) was successfully synthesized via an esterification reaction of 2,2-bis(methylol)propionic acid (bis-MPA) with pentaerythritol. The molecular weights of the HBPEs were 2160, 2660, 4150 and 5840 g/mol, respectively. These HBPEs were used as additives to prepare polysulfone (PSf) hollow fiber membranes via non-solvent induced phase separation. The characteristic behaviors of the casting solution were investigated, as well as the morphologies, hydrophilicity and mechanical properties of the PSf membranes. The results showed that the initial viscosities of the casting solutions were increased, and the shear-thinning phenomenon became increasingly obvious. The demixing rate first increased and then decreased when increasing the HBPE molecular weight, and the turning point was 2660 g/mol. The PSf hollow fiber membranes with different molecular weights of HBPEs had a co-existing morphology of double finger-like and sponge-like structures. The starting pure water contact angle decreased obviously, and the mechanical properties improved.


Sign in / Sign up

Export Citation Format

Share Document