High performance organic solar cells : from molecular design to morphology optimization

Author(s):  
Huawei Hu
2021 ◽  
Author(s):  
Junzhen Ren ◽  
Pengqing Bi ◽  
Jianqi Zhang ◽  
Jiao Liu ◽  
Jingwen Wang ◽  
...  

Abstract Developing photovoltaic materials with simple chemical structures and easy synthesis still remains a major challenge in the industrialization process of organic solar cells (OSCs). Herein, an ester substituted poly(thiophene vinylene) derivative, PTVT-T, was designed and synthesized in very few steps by adopting commercially available raw materials. The ester groups on the thiophene units enable PTVT-T to have a planar and stable conformation. Moreover, PTVT-T presents a wide absorption band and strong aggregation effect in solution, which are the key characteristics needed to realize high performance in non-fullerene-acceptor (NFA)-based OSCs. We then prepared OSCs by blending PTVT-T with three representative fullerene- and NF-based acceptors, PC71BM, IT-4F and BTP-eC9. It was found that PTVT-T can work well with all the acceptors, showing great potential to match new emerging NFAs. Particularly, a remarkable power conversion efficiency of 16.20% is achieved in a PTVT-T:BTP-eC9-based device, which is the highest value among the counterparts based on PTV derivatives. This work demonstrates that PTVT-T shows great potential for the future commercialization of OSCs.


Author(s):  
Ya-Nan Chen ◽  
Rui Zheng ◽  
Jing Wang ◽  
Hang Wang ◽  
Miao Li ◽  
...  

The side chain engineering of the photoactive materials is one of the most commonly used molecular design strategies for developing high performance organic solar cells (OSCs). Herein, two alkyl (or...


2020 ◽  
Vol 8 (38) ◽  
pp. 13422-13429
Author(s):  
Sri Harish Kumar Paleti ◽  
Nicola Gasparini ◽  
Christos L. Chochos ◽  
Derya Baran

Three pi-conjugated terpolymers based on the nonconventional molecular design strategy D1–D2–D1–A comprising two different multi-fused ladder-type arene electron-donating units and an electron-withdrawing unit are synthesized for organic photovoltaics.


2019 ◽  
Vol 16 (3) ◽  
pp. 236-243 ◽  
Author(s):  
Hui Zhang ◽  
Yibing Ma ◽  
Youyi Sun ◽  
Jialei Liu ◽  
Yaqing Liu ◽  
...  

In this review, small-molecule donors for application in organic solar cells reported in the last three years are highlighted. Especially, the effect of donor molecular structure on power conversion efficiency of organic solar cells is reported in detail. Furthermore, the mechanism is proposed and discussed for explaining the relationship between structure and power conversion efficiency. These results and discussions draw some rules for rational donor molecular design, which is very important for further improving the power conversion efficiency of organic solar cells based on the small-molecule donor.


2021 ◽  
pp. 129768
Author(s):  
Dou Luo ◽  
Xue Lai ◽  
Nan Zheng ◽  
Chenghao Duan ◽  
Zhaojin Wang ◽  
...  

2021 ◽  
Vol 60 (16) ◽  
pp. 8813-8817
Author(s):  
Shuting Pang ◽  
Zhiqiang Wang ◽  
Xiyue Yuan ◽  
Langheng Pan ◽  
Wanyuan Deng ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenrong Jia ◽  
Shucheng Qin ◽  
Lei Meng ◽  
Qing Ma ◽  
Indunil Angunawela ◽  
...  

AbstractTandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells.


2021 ◽  
Author(s):  
Lin Lin ◽  
Zeping Huang ◽  
Yuanqi Luo ◽  
Tingen Peng ◽  
Baitian He ◽  
...  

The synthesis and application as a cathode interlayer in organic photovoltaics of a fluorene derivative with pyridyl functional chains are presented.


Sign in / Sign up

Export Citation Format

Share Document