Synthesis of bicyclic ether, total synthesis of cinanthrenol A, and total syntheses and structural revision of uprolide G acetate and uprolide F diacetate

2015 ◽  
Author(s):  
Liangyu Zhu
2019 ◽  
Author(s):  
Timothy Newhouse ◽  
Alexander Schuppe ◽  
Yizhou Zhao ◽  
Yannan Liu

We report the first total synthesis of (+)-granatumine A, a limonoid alkaloid with PTP-1B inhibitory activity, in 10 steps. Over the course of this study, two key methodological advances were made: a cost effective procedure for ketone alpha,beta-dehydrogenation using allyl-Pd catalysis, and a Pd-catalyzed protocol to convert epoxyketones to 1,3-diketones. The central tetrasubstituted pyridine is formed by a convergent Knoevenagel condensation and carbonyl-selective electrocyclization cascade, which was followed by a direct transformation of a 2<i>H</i>-pyran to a pyridine. These studies have led to the structural revision of two members of this family.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3224
Author(s):  
Leander Geske ◽  
Ulrich Kauhl ◽  
Mohamed E. M. Saeed ◽  
Anja Schüffler ◽  
Eckhard Thines ◽  
...  

The biological activities of shancigusin C (1) and bletistrin G (2), natural products isolated from orchids, are reported along with their first total syntheses. The total synthesis of shancigusin C (1) was conducted by employing the Perkin reaction to forge the central stilbene core, whereas the synthesis of bletistrin G (2) was achieved by the Wittig olefination followed by several regioselective aromatic substitution reactions. Both syntheses were completed by applying only renewable starting materials according to the principles of xylochemistry. The cytotoxic properties of shancigusin C (1) and bletistrin G (2) against tumor cells suggest suitability as a starting point for further structural variation.


Author(s):  
Aldahir Ramos Orea ◽  
María Teresa Ramírez-Apan ◽  
Rosa M. Chávez-Santos ◽  
Rodrigo Aguayo-Ortiz ◽  
Clara I Espitia ◽  
...  

A high-yielding total synthesis of the indole alkaloid prenostodione was completed in 4 steps and 44% overall yield from 1H-indole-3-carboxylic acid. The expedient syntheses of prenostodiones containing distinct substituents at...


2018 ◽  
Vol 130 (12) ◽  
pp. 3123-3127 ◽  
Author(s):  
Joonseong Hur ◽  
Jaebong Jang ◽  
Jaehoon Sim ◽  
Woo Sung Son ◽  
Hee-Chul Ahn ◽  
...  

1983 ◽  
Vol 24 (41) ◽  
pp. 4445-4446 ◽  
Author(s):  
Tadao Uyehara ◽  
Jun-ichi Yamada ◽  
Tadahiro Kato ◽  
Ferdinand Bohlmann

ChemInform ◽  
2014 ◽  
Vol 45 (21) ◽  
pp. no-no
Author(s):  
Patrick D. Brown ◽  
Anthony C. Willis ◽  
Michael S. Sherburn ◽  
Andrew L. Lawrence

1985 ◽  
Vol 63 (4) ◽  
pp. 993-995 ◽  
Author(s):  
Kazimierz Antczak ◽  
John F. Kingston ◽  
Alex G. Fallis

Stereoselective total synthesis of (±)-sinularene and (±)-5-epi-sinularene are described. The sequence employs a "blocked" cyclopentadiene in which the cyclopropane unit also serves as a latent methyl group. Thus intramolecular [4 + 2] cycloaddition of the substituted methyl spiro[2.4]hepta-4,6-dien-1-yl)-2-pentenoate 11 affords 5-benzyloxy-6-isopropyl-8-carbomethoxytetracyclo[5.4.01,7.02,4.02,9]undec-10-ene (12) which after selective hydrogenolysis generates the tricyclo[4.4.01,6.02,8]decane (sinularene) ring system. Removal of the secondary hydroxyl function (Ph3P/CCl4/CH3CN; H2/Pd/C), reduction of the methyl ester (LiAlH4), and introduction of the exocyclic double bond (acetate pyrolysis, 550 °C) completes the synthesis of (±)-sinularene in 14 steps from cyclopentadiene. A parallel series of reactions employing the isopropyl epimer of 12 affords (±)-5-epi-sinularene.


Synthesis ◽  
2018 ◽  
Vol 50 (23) ◽  
pp. 4569-4576
Author(s):  
Tian Jin ◽  
Lu Zhao ◽  
Zhe-Bin Zheng ◽  
Xiao Liu ◽  
Liang Sun ◽  
...  

Clavaminols are a new class of long-chain 2-amino-3-­alkanols that mostly contain 2R,3S-configurations. Owing to their interesting molecular architectures and promising activities, they have ­become popular targets for synthetic organic chemists. In this review, we highlight 12 total syntheses of clavaminols from different research groups during the period 2009 to 2018.1 Introduction2 Synthetic Approaches toward Clavaminols2.1 Total Synthesis by Chemla and Colleagues (2009)2.2 Total Synthesis by Greck and Colleagues (2010)2.3 Total Synthesis by Sutherland and Zaed (2011)2.4 Total Synthesis by Huang and Colleagues (2011)2.5 Total Synthesis by Kotora and Colleagues (2012)2.6 Total Synthesis by Kumar and Colleagues (2013)2.7 Total Synthesis by Prabhavathi Devi and Colleagues (2013 and 2016)2.8 Total Synthesis by Sarabia and Colleagues (2014)2.9 Total Synthesis by Mohapatra and Colleagues (2016)2.10 Total Synthesis by Lu and Colleagues (2016)2.11 Total Synthesis by Jin and Colleagues (2017)2.12 Total Synthesis by Kumar Pandey and Colleagues (2018)3 Conclusion


Sign in / Sign up

Export Citation Format

Share Document