Experimental investigation of non-uniform corrosion of the steel bars in concrete

2016 ◽  
Author(s):  
Kang Shao
2012 ◽  
Vol 535-537 ◽  
pp. 1803-1806
Author(s):  
Shun Bo Zhao ◽  
Peng Bing Hou ◽  
Fu Lai Qu

An experimental study was carried out to examine the non-uniform corrosion of plain steel bars in reinforced concrete beams partially placed in 5% sodium chloride solution under conditions of accelerated corrosion. 4 reinforced concrete beams with different concrete strength were made. The crack distributions of the beams due to pre-loads and expansion of corrosion product, and the sectional corrosion characteristics of plain steel bars are described in detail. The sectional area loss relating to mass loss and change along pure bending length of the beams are discussed. These can be used as the basis of test for further studies to build the numerical models of serviceability of corroded reinforced concrete beams.


2018 ◽  
Vol 878 ◽  
pp. 23-27 ◽  
Author(s):  
Ming Qiang Lin ◽  
Feng Juan Dai ◽  
Jia Tao Li

The corrosion of concrete structures is serious in sulfuric acid environments. Corrosion damage of reinforcements caused sulfuric acid corrosion is very serious. The rapid experiments of sulfuric acid corrosion steel bars were carried out, and the apparent morphology and mechanical properties of sulfuric acid corrosion steel bars were studied. The results show that the corrosion of steel bars is uniform corrosion. With the increase of corrosion rate, the yield platforms and the yield strengths and ultimate strengths are reduced. Based on the experimental datas, the relationship models between yield strengths and ultimate strengths and corrosion rates were obtained. The constitutive models of corrosion steel bars were established. The stress - strain relationship model is in good agreement with the experimental data.


2018 ◽  
Vol 196 ◽  
pp. 01046
Author(s):  
Aniela Glinicka ◽  
Michał Maciąg

The paper presents the analysis of the load-bearing capacity of thin-walled steel bars such as beam-column. It was assumed that the rods are subject to uniformly distributed surface corrosion in the atmosphere over their entire length. As a result of corrosion, the mass loss of these rods, i.e. the thickness of the cross-sectional walls of the rod are evenly reduced. Therefore, the dependence of the critical force - the eccentricity changes. The theory of stability of thin-walled bars was used to calculate the load capacity of the rod. To calculate changes in the load capacity of the rod, an interactive relationship was used that combines compression with bending. A calculation example of the load capacity of an eccentrically compressed rod with a “C” section which has been corroded has been presented.


2020 ◽  
Vol 255 ◽  
pp. 119425
Author(s):  
Yulin Feng ◽  
Lizhong Jiang ◽  
Wangbao Zhou ◽  
Jianping Han ◽  
Yuntai Zhang ◽  
...  

2014 ◽  
Vol 578-579 ◽  
pp. 155-159 ◽  
Author(s):  
Peng Cheng Zhu ◽  
Ming Kang Gou ◽  
Yin Zhi Zhou

The external post-tensioning technique has been commonly used in the construction field because it facilitates the analysis of structures and is widely applicable for many types of structures. In this research, 12 steel H-beams were built and tested in terms of the amount of tendon or prestressing force. The results show that the externally prestressing method can increase ultimate bearing capacity of the beams. The prestressing force is the significant factor that influence the strengthening of steel H-beams. However, the amount of deviators cannot significantly influence the bearing capacity.


Sign in / Sign up

Export Citation Format

Share Document