On optimization of the decoding order, bit and power allocation of wireless communication systems with serial interference cancellation

2001 ◽  
Author(s):  
Siu Man Shum
2015 ◽  
Vol 781 ◽  
pp. 89-92 ◽  
Author(s):  
Atikom Suppayasarn ◽  
Sarun Duangsuwan ◽  
Sathaporn Promwong

This paper studies an indoor multipath interference cancellation using the MMSE-CMA estimator for the unlicensed at 2.45 GHz of wireless communication systems. The proposed of the MMSE-CMA estimator can mitigate a superposition of the multipath interference at the receiver. As the result, the magnitudes of the channel characterization in the time domain are shown between the measured and estimated channel as a difference of number of iterations. Furthermore, we also confirm the multipath interference cancellation with the eye diagrams.


Actually, the interference phenomena appear in all current wireless communication systems. Generally, conventional wireless communication systems use two separate channels; one of them for transmitting and the other one for receiving. Achieving single channel full duplex (FD) represents one of the key challenges for the implementation of 5G. Single channel FD permits the capability of wireless communication system to transmit and get concurrently on the identical channel, as well as the assurance of an efficient utilization of the current spectrum. With this newest technology, another sort of interference, which is called self–interference, will be generated. Therefore, self–interference cancellation strategies have an awesome solution for the development of the next generation. Passive and active cancellation techniques can be used to remedy such type of interference. In this regard, a dual feeding antenna approach is regarded as passive cancellation. This paper is concerned with this type of self-interference cancellation. A patch antenna is simulated and tested for two resonance frequencies; 2.45 and 28 GHz. Both of these frequencies are frequency channel candidates proposed by international telecommunication union (ITU) for the fifth generation of mobile networks.


Sign in / Sign up

Export Citation Format

Share Document