scholarly journals The Design and Testing of 3DmoveR: an Experimental Tool for Usability Studies of Interactive 3D Maps

2018 ◽  
pp. 31-63 ◽  
Author(s):  
Lukáš Herman ◽  
Tomáš Řezník ◽  
Zdeněk Stachoň ◽  
Jan Russnák

Various widely available applications such as Google Earth have made interactive 3D visualizations of spatial data popular. While several studies have focused on how users perform when interacting with these with 3D visualizations, it has not been common to record their virtual movements in 3D environments or interactions with 3D maps. We therefore created and tested a new web-based research tool: a 3D Movement and Interaction Recorder (3DmoveR). Its design incorporates findings from the latest 3D visualization research, and is built upon an iterative requirements analysis. It is implemented using open web technologies such as PHP, JavaScript, and the X3DOM library. The main goal of the tool is to record camera position and orientation during a user’s movement within a virtual 3D scene, together with other aspects of their interaction. After building the tool, we performed an experiment to demonstrate its capabilities. This experiment revealed differences between laypersons and experts (cartographers) when working with interactive 3D maps. For example, experts achieved higher numbers of correct answers in some tasks, had shorter response times, followed shorter virtual trajectories, and moved through the environment more smoothly. Interaction-based clustering as well as other ways of visualizing and qualitatively analyzing user interaction were explored.

Author(s):  
L. Herman ◽  
Z. Stachoň

Interactive 3D visualizations of spatial data are currently available and popular through various applications such as Google Earth, ArcScene, etc. Several scientific studies have focused on user performance with 3D visualization, but static perspective views are used as stimuli in most of the studies. The main objective of this paper is to try to identify potential differences in user performance with static perspective views and interactive visualizations. This research is an exploratory study. An experiment was designed as a between-subject study and a customized testing tool based on open web technologies was used for the experiment. The testing set consists of an initial questionnaire, a training task and four experimental tasks. Selection of the highest point and determination of visibility from the top of a mountain were used as the experimental tasks. Speed and accuracy of each task performance of participants were recorded. The movement and actions in the virtual environment were also recorded within the interactive variant. The results show that participants deal with the tasks faster when using static visualization. The average error rate was also higher in the static variant. The findings from this pilot study will be used for further testing, especially for formulating of hypotheses and designing of subsequent experiments.


Author(s):  
L. Herman ◽  
Z. Stachoň

Interactive 3D visualizations of spatial data are currently available and popular through various applications such as Google Earth, ArcScene, etc. Several scientific studies have focused on user performance with 3D visualization, but static perspective views are used as stimuli in most of the studies. The main objective of this paper is to try to identify potential differences in user performance with static perspective views and interactive visualizations. This research is an exploratory study. An experiment was designed as a between-subject study and a customized testing tool based on open web technologies was used for the experiment. The testing set consists of an initial questionnaire, a training task and four experimental tasks. Selection of the highest point and determination of visibility from the top of a mountain were used as the experimental tasks. Speed and accuracy of each task performance of participants were recorded. The movement and actions in the virtual environment were also recorded within the interactive variant. The results show that participants deal with the tasks faster when using static visualization. The average error rate was also higher in the static variant. The findings from this pilot study will be used for further testing, especially for formulating of hypotheses and designing of subsequent experiments.


2011 ◽  
Vol 6 ◽  
pp. 267-274
Author(s):  
Stanislav Popelka ◽  
Alžběta Brychtová

Olomouc, nowadays a city with 100,000 inhabitants, has always been considered as one of the most prominent Czech cities. It is a social and economical centre, which history started just about the 11th century. The present appearance of the city has its roots in the 18th century, when the city was almost razed to the ground after the Thirty years’ war and a great fire in 1709. After that, the city was rebuilt to a baroque military fortress against Prussia army. At the beginning of the 20th century the majority of the fortress was demolished. Character of the town is dominated by the large number of churches, burgher’s houses and other architecturally significant buildings, like a Holy Trinity Column, a UNESCO World Heritage Site. Aim of this project was to state the most suitable methods of visualization of spatial-temporal change in historical build-up area from the tourist’s point of view, and to design and evaluate possibilities of spatial data acquisition. There are many methods of 2D and 3D visualization which are suitable for depiction of historical and contemporary situation. In the article four approaches are discussed comparison of historical and recent pictures or photos, overlaying historical maps over the orthophoto, enhanced visualization of historical map in large scale using the third dimension and photorealistic 3D models of the same area in different ages. All mentioned methods were geolocalizated using the Google Earth environment and multimedia features were added to enhance the impression of perception. Possibilities of visualization, which were outlined above, were realized on a case study of the Olomouc city. As a source of historical data were used rapport plans of the bastion fortress from the 17th century. The accuracy of historical maps was confirmed by cartometric methods with use of the MapAnalyst software. Registration of the spatial-temporal changes information has a great potential in urban planning or realization of reconstruction and particularly in the propagation of the region and increasing the knowledge of citizens about the history of Olomouc.


2019 ◽  
Vol 11 (21) ◽  
pp. 2508 ◽  
Author(s):  
Argyro-Maria Boutsi ◽  
Charalabos Ioannidis ◽  
Sofia Soile

The evolution of the high-quality 3D archaeological representations from niche products to integrated online media has not yet been completed. Digital archives of the field often lack multimodal data interoperability, user interaction and intelligibility. A web-based cultural heritage archive that compensates for these issues is presented in this paper. The multi-resolution 3D models constitute the core of the visualization on top of which supportive documentation data and multimedia content are spatial and logical connected. Our holistic approach focuses on the dynamic manipulation of the 3D scene through the development of advanced navigation mechanisms and information retrieval tools. Users parse the multi-modal content in a geo-referenced way through interactive annotation systems over cultural points of interest and automatic narrative tours. Multiple 3D and 2D viewpoints are enabled in real-time to support data inspection. The implementation exploits front-end programming languages, 3D graphic libraries and visualization frameworks to handle efficiently the asynchronous operations and preserve the initial assets’ accuracy. The choice of Greece’s Meteora, UNESCO world site, as a case study accounts for the platform’s applicability to complex geometries and large-scale historical environments.


2018 ◽  
Vol 10 (8) ◽  
pp. 81 ◽  
Author(s):  
Fabio Viola ◽  
Luca Roffia ◽  
Francesco Antoniazzi ◽  
Alfredo D’Elia ◽  
Cristiano Aguzzi ◽  
...  

This article presents Tarsier, a tool for the interactive 3D visualization of RDF graphs. Tarsier is mainly intended to support teachers introducing students to Semantic Web data representation formalisms and developers in the debugging of applications based on Semantic Web knowledge bases. The tool proposes the metaphor of semantic planes as a way to visualize an RDF graph. A semantic plane contains all the RDF terms sharing a common concept; it can be created, and further split into several planes, through a set of UI controls or through SPARQL 1.1 queries, with the full support of OWL and RDFS. Thanks to the 3D visualization, links between semantic planes can be highlighted and the user can navigate within the 3D scene to find the better perspective to analyze data. Data can be gathered from generic SPARQL 1.1 protocol services. We believe that Tarsier will enhance the human friendliness of semantic technologies by: (1) helping newcomers assimilate new data representation formats; and (2) increasing the capabilities of inspection to detect relevant situations even in complex RDF graphs.


Author(s):  
W. Beek ◽  
E. Folmer ◽  
L. Rietveld ◽  
T. Baving ◽  
V. van Altena

<p><strong>Abstract.</strong> 3D environments allow advanced spatial navigation and visualization, but have traditionally provided limited support for performing non-spatial data analysis operations like filtering, joining, and integrating data on-the-fly. Linked Open Data provides advanced support for performing filters and joins over datasets that can be dynamically combined through SPARQL federation. Unfortunately, Linked Data results often lack intuitive visualization capabilities, making it relatively difficult to interpret the data for a data analyst. In this paper we present our integration of 3D visualization into the read-evaluate-print-loop of SPARQL query execution. We show how the inclusion of 3D visualization has concrete benefits for the SPARQL query writing process, and how our integrated solution is used to answer specific use cases that could not be answered before.</p>


2014 ◽  
pp. 95-98
Author(s):  
Péter Ragán ◽  
Károly Bakó ◽  
Tamás Dövényi-Nagy

This paper describes a dynamic map representation method which provides a flexible, spectacular and cost-effective opportunity for the illustration and description of spatial data due to its parametrability, web-based publication and the free sowftare it uses in multi-user circumstances. The tasks of the database serves and the processing were performed by an ASUS WL-500 G Premium v2 router and a 80 GB hard disk. The database contains the measured data of the nitrogen fertilisation experiment established on the Látókép Experiment Site of the Centre for Agricultural Sciences of the University of Debrecen. The tests showed that the generation time of the processor which was run through the router did not significantly increase. Therefore, the configuration developed by us is suitable for users who do not wish to invest into a large and expensive server, but they still want to view their data quickly and easily, as well as to reach them from anywhere. The available data were not sorted into a database which was performed with Quantum GIS in a way to have an optimum database structure which is adjusted to the expected areas of use and the expected running speeds were also taken into consideration. The processor which processes the database items was written in PHP language. The main role of the processor is that it produces a KML file real time which is suitable for viewing with a given map viewer client (e.g. Google Earth). This application makes it possible to view information related to geographical objects, values stored in the database or those calculated by the processor on a map in 2D or 3D in a versatile way.


Sign in / Sign up

Export Citation Format

Share Document