scholarly journals COMPARISON OF USER PERFORMANCE WITH INTERACTIVE AND STATIC 3D VISUALIZATION – PILOT STUDY

Author(s):  
L. Herman ◽  
Z. Stachoň

Interactive 3D visualizations of spatial data are currently available and popular through various applications such as Google Earth, ArcScene, etc. Several scientific studies have focused on user performance with 3D visualization, but static perspective views are used as stimuli in most of the studies. The main objective of this paper is to try to identify potential differences in user performance with static perspective views and interactive visualizations. This research is an exploratory study. An experiment was designed as a between-subject study and a customized testing tool based on open web technologies was used for the experiment. The testing set consists of an initial questionnaire, a training task and four experimental tasks. Selection of the highest point and determination of visibility from the top of a mountain were used as the experimental tasks. Speed and accuracy of each task performance of participants were recorded. The movement and actions in the virtual environment were also recorded within the interactive variant. The results show that participants deal with the tasks faster when using static visualization. The average error rate was also higher in the static variant. The findings from this pilot study will be used for further testing, especially for formulating of hypotheses and designing of subsequent experiments.

Author(s):  
L. Herman ◽  
Z. Stachoň

Interactive 3D visualizations of spatial data are currently available and popular through various applications such as Google Earth, ArcScene, etc. Several scientific studies have focused on user performance with 3D visualization, but static perspective views are used as stimuli in most of the studies. The main objective of this paper is to try to identify potential differences in user performance with static perspective views and interactive visualizations. This research is an exploratory study. An experiment was designed as a between-subject study and a customized testing tool based on open web technologies was used for the experiment. The testing set consists of an initial questionnaire, a training task and four experimental tasks. Selection of the highest point and determination of visibility from the top of a mountain were used as the experimental tasks. Speed and accuracy of each task performance of participants were recorded. The movement and actions in the virtual environment were also recorded within the interactive variant. The results show that participants deal with the tasks faster when using static visualization. The average error rate was also higher in the static variant. The findings from this pilot study will be used for further testing, especially for formulating of hypotheses and designing of subsequent experiments.


2018 ◽  
pp. 31-63 ◽  
Author(s):  
Lukáš Herman ◽  
Tomáš Řezník ◽  
Zdeněk Stachoň ◽  
Jan Russnák

Various widely available applications such as Google Earth have made interactive 3D visualizations of spatial data popular. While several studies have focused on how users perform when interacting with these with 3D visualizations, it has not been common to record their virtual movements in 3D environments or interactions with 3D maps. We therefore created and tested a new web-based research tool: a 3D Movement and Interaction Recorder (3DmoveR). Its design incorporates findings from the latest 3D visualization research, and is built upon an iterative requirements analysis. It is implemented using open web technologies such as PHP, JavaScript, and the X3DOM library. The main goal of the tool is to record camera position and orientation during a user’s movement within a virtual 3D scene, together with other aspects of their interaction. After building the tool, we performed an experiment to demonstrate its capabilities. This experiment revealed differences between laypersons and experts (cartographers) when working with interactive 3D maps. For example, experts achieved higher numbers of correct answers in some tasks, had shorter response times, followed shorter virtual trajectories, and moved through the environment more smoothly. Interaction-based clustering as well as other ways of visualizing and qualitatively analyzing user interaction were explored.


2011 ◽  
Vol 6 ◽  
pp. 267-274
Author(s):  
Stanislav Popelka ◽  
Alžběta Brychtová

Olomouc, nowadays a city with 100,000 inhabitants, has always been considered as one of the most prominent Czech cities. It is a social and economical centre, which history started just about the 11th century. The present appearance of the city has its roots in the 18th century, when the city was almost razed to the ground after the Thirty years’ war and a great fire in 1709. After that, the city was rebuilt to a baroque military fortress against Prussia army. At the beginning of the 20th century the majority of the fortress was demolished. Character of the town is dominated by the large number of churches, burgher’s houses and other architecturally significant buildings, like a Holy Trinity Column, a UNESCO World Heritage Site. Aim of this project was to state the most suitable methods of visualization of spatial-temporal change in historical build-up area from the tourist’s point of view, and to design and evaluate possibilities of spatial data acquisition. There are many methods of 2D and 3D visualization which are suitable for depiction of historical and contemporary situation. In the article four approaches are discussed comparison of historical and recent pictures or photos, overlaying historical maps over the orthophoto, enhanced visualization of historical map in large scale using the third dimension and photorealistic 3D models of the same area in different ages. All mentioned methods were geolocalizated using the Google Earth environment and multimedia features were added to enhance the impression of perception. Possibilities of visualization, which were outlined above, were realized on a case study of the Olomouc city. As a source of historical data were used rapport plans of the bastion fortress from the 17th century. The accuracy of historical maps was confirmed by cartometric methods with use of the MapAnalyst software. Registration of the spatial-temporal changes information has a great potential in urban planning or realization of reconstruction and particularly in the propagation of the region and increasing the knowledge of citizens about the history of Olomouc.


2018 ◽  
Vol 30 (7) ◽  
pp. 1268 ◽  
Author(s):  
Guodao Sun ◽  
Puyong Huang ◽  
Yipeng Liu ◽  
Ronghua Liang

2012 ◽  
Vol 39 (9) ◽  
pp. 1072-1082 ◽  
Author(s):  
Ali Montaser ◽  
Ibrahim Bakry ◽  
Adel Alshibani ◽  
Osama Moselhi

This paper presents an automated method for estimating productivity of earthmoving operations in near-real-time. The developed method utilizes Global Positioning System (GPS) and Google Earth to extract the data needed to perform the estimation process. A GPS device is mounted on a hauling unit to capture the spatial data along designated hauling roads for the project. The variations in the captured cycle times were used to model the uncertainty associated with the operation involved. This was carried out by automated classification, data fitting, and computer simulation. The automated classification is applied through a spreadsheet application that classifies GPS data and identifies, accordingly, durations of different activities in each cycle using spatial coordinates and directions captured by GPS and recorded on its receiver. The data fitting was carried out using commercially available software to generate the probability distribution functions used in the simulation software “Extend V.6”. The simulation was utilized to balance the production of an excavator with that of the hauling units. A spreadsheet application was developed to perform the calculations. An example of an actual project was analyzed to demonstrate the use of the developed method and illustrates its essential features. The analyzed case study demonstrates how the proposed method can assist project managers in taking corrective actions based on the near-real-time actual data captured and processed to estimate productivity of the operations involved.


2018 ◽  
Vol 477 (2) ◽  
pp. 1495-1507 ◽  
Author(s):  
T Dykes ◽  
A Hassan ◽  
C Gheller ◽  
D Croton ◽  
M Krokos

2017 ◽  
Vol 6 (4) ◽  
pp. 99 ◽  
Author(s):  
Matthieu Noucher ◽  
Françoise Gourmelon ◽  
Pierre Gautreau ◽  
Jade Georis-Creuseveau ◽  
Adeline Maulpoix ◽  
...  

Author(s):  
Dawei Xu ◽  
Lin Wang ◽  
Xin Wang ◽  
Dianquan Li ◽  
Jianpeng Duan ◽  
...  

Author(s):  
Nghia Viet Nguyen ◽  
Thu Hoai Thi Trinh ◽  
Hoa Thi Pham ◽  
Trang Thu Thi Tran ◽  
Lan Thi Pham ◽  
...  

Land cover is a critical factor for climate change and hydrological models. The extraction of land cover data from remote sensing images has been carried out by specialized commercial software. However, the limitations of computer hardware and algorithms of the commercial software are costly and make it take a lot of time, patience, and skills to do the classification. The cloud computing platform Google Earth Engine brought a breakthrough in 2010 for analyzing and processing spatial data. This study applied Object-based Random Forest classification in the Google Earth Engine platform to produce land cover data in 2010 in the Vu Gia - Thu Bon river basin. The classification results showed 7 categories of land cover consisting of plantation forest, natural forest, paddy field, urban residence, rural residence, bare land, and water surface, with an overall accuracy of 73.9% and kappa of 0.70.


2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Goddu Pavan Sai Goud ◽  
Ashutosh Bhardwaj

The use of remote sensing for urban monitoring is a very reliable and cost-effective method for studying urban expansion in horizontal and vertical dimensions. The advantage of multi-temporal spatial data and high data accuracy is useful in mapping urban vertical aspects like the compactness of urban areas, population expansion, and urban surface geometry. This study makes use of the ‘Ice, cloud, and land elevation satellite-2′ (ICESat-2) ATL 03 photon data for building height estimation using a sample of 30 buildings in three experimental sites. A comparison of computed heights with the heights of the respective buildings from google image and google earth pro was done to assess the accuracy and the result of 2.04 m RMSE was obtained. Another popularly used method by planners and policymakers to map the vertical dimension of urban terrain is the Digital Elevation Model (DEM). An assessment of the openly available DEM products—TanDEM-X and Cartosat-1 has been done over Urban and Rural areas. TanDEM-X is a German earth observation satellite that uses InSAR (Synthetic Aperture Radar Interferometry) technique to acquire DEM while Cartosat-1 is an optical stereo acquisition satellite launched by the Indian Space Research Organization (ISRO) that uses photogrammetric techniques for DEM acquisition. Both the DEMs have been compared with ICESat-2 (ATL-08) Elevation data as the reference and the accuracy has been evaluated using Mean error (ME), Mean absolute error (MAE) and Root mean square error (RMSE). In the case of Greater Hyderabad Municipal Corporation (GHMC), RMSE values 5.29 m and 7.48 m were noted for TanDEM-X 90 and CartoDEM V3 R1 respectively. While the second site of Bellampalli Mandal rural area observed 5.15 and 5.48 RMSE values for the same respectively. Therefore, it was concluded that TanDEM-X has better accuracy as compared to the CartoDEM V3 R1.


Sign in / Sign up

Export Citation Format

Share Document