scholarly journals Investigating Graph Embedding Neural Networks with Unsupervised Features Extraction for Binary Analysis

Author(s):  
Luca Massarelli ◽  
Giuseppe A. Di Luna ◽  
Fabio Petroni ◽  
Leonardo Querzoni ◽  
Roberto Baldoni
2021 ◽  
Author(s):  
Rogini Runghen ◽  
Daniel B Stouffer ◽  
Giulio Valentino Dalla Riva

Collecting network interaction data is difficult. Non-exhaustive sampling and complex hidden processes often result in an incomplete data set. Thus, identifying potentially present but unobserved interactions is crucial both in understanding the structure of large scale data, and in predicting how previously unseen elements will interact. Recent studies in network analysis have shown that accounting for metadata (such as node attributes) can improve both our understanding of how nodes interact with one another, and the accuracy of link prediction. However, the dimension of the object we need to learn to predict interactions in a network grows quickly with the number of nodes. Therefore, it becomes computationally and conceptually challenging for large networks. Here, we present a new predictive procedure combining a graph embedding method with machine learning techniques to predict interactions on the base of nodes' metadata. Graph embedding methods project the nodes of a network onto a---low dimensional---latent feature space. The position of the nodes in the latent feature space can then be used to predict interactions between nodes. Learning a mapping of the nodes' metadata to their position in a latent feature space corresponds to a classic---and low dimensional---machine learning problem. In our current study we used the Random Dot Product Graph model to estimate the embedding of an observed network, and we tested different neural networks architectures to predict the position of nodes in the latent feature space. Flexible machine learning techniques to map the nodes onto their latent positions allow to account for multivariate and possibly complex nodes' metadata. To illustrate the utility of the proposed procedure, we apply it to a large dataset of tourist visits to destinations across New Zealand. We found that our procedure accurately predicts interactions for both existing nodes and nodes newly added to the network, while being computationally feasible even for very large networks. Overall, our study highlights that by exploiting the properties of a well understood statistical model for complex networks and combining it with standard machine learning techniques, we can simplify the link prediction problem when incorporating multivariate node metadata. Our procedure can be immediately applied to different types of networks, and to a wide variety of data from different systems. As such, both from a network science and data science perspective, our work offers a flexible and generalisable procedure for link prediction.


Author(s):  
Jiafeng Cheng ◽  
Qianqian Wang ◽  
Zhiqiang Tao ◽  
Deyan Xie ◽  
Quanxue Gao

Graph neural networks (GNNs) have made considerable achievements in processing graph-structured data. However, existing methods can not allocate learnable weights to different nodes in the neighborhood and lack of robustness on account of neglecting both node attributes and graph reconstruction. Moreover, most of multi-view GNNs mainly focus on the case of multiple graphs, while designing GNNs for solving graph-structured data of multi-view attributes is still under-explored. In this paper, we propose a novel Multi-View Attribute Graph Convolution Networks (MAGCN) model for the clustering task. MAGCN is designed with two-pathway encoders that map graph embedding features and learn the view-consistency information. Specifically, the first pathway develops multi-view attribute graph attention networks to reduce the noise/redundancy and learn the graph embedding features for each multi-view graph data. The second pathway develops consistent embedding encoders to capture the geometric relationship and probability distribution consistency among different views, which adaptively finds a consistent clustering embedding space for multi-view attributes. Experiments on three benchmark graph datasets show the superiority of our method compared with several state-of-the-art algorithms.


2019 ◽  
Vol 9 (10) ◽  
pp. 2042 ◽  
Author(s):  
Rachida Tobji ◽  
Wu Di ◽  
Naeem Ayoub

In Deep Learning, recent works show that neural networks have a high potential in the field of biometric security. The advantage of using this type of architecture, in addition to being robust, is that the network learns the characteristic vectors by creating intelligent filters in an automatic way, grace to the layers of convolution. In this paper, we propose an algorithm “FMnet” for iris recognition by using Fully Convolutional Network (FCN) and Multi-scale Convolutional Neural Network (MCNN). By taking into considerations the property of Convolutional Neural Networks to learn and work at different resolutions, our proposed iris recognition method overcomes the existing issues in the classical methods which only use handcrafted features extraction, by performing features extraction and classification together. Our proposed algorithm shows better classification results as compared to the other state-of-the-art iris recognition approaches.


2021 ◽  
Author(s):  
Elans Grabs ◽  
Tianhua Chen ◽  
Ernests Petersons ◽  
Dmitry Efrosinin ◽  
Aleksandrs Ipatovs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document