scholarly journals TOWARDS GLOBAL OPTIMIZATION OF NEURAL NETWORK: A COMPARATIVE ANALYSIS USING GENETIC AND WHALE OPTIMIZATION ALGORITHMS

2021 ◽  
Vol 8 (6) ◽  
pp. 89-101
Author(s):  
E. C. Igodan ◽  
K. C. Ukaoha ◽  
S. O. P. Oliomogbe

The intelligence and adaptability features of the neural network has made it a technique that is widely used to solve problems in diverse areas such as; detection, monitoring, prediction, diagnostics, data mining, classification, recognition, robotics, biomedicine, etc. However, determination of the optimal number of hidden layers of neural network and other parameters are still a difficult task. Usually, these parameters are decided by trial-and-error which increases the computational complexity and it is human dependent in obtaining the optimal model and parameters alike for any particular task. Optimization has received enormous attention in recent years, primarily because of the rapid progress in computer technology, including the development and availability of user-friendly software, high-speed and parallel processors, and artificial neural networks. This research work is to propose a neuro-evolutionary model using the computational intelligence techniques by combining ANN, GA and WOA for binary classification problems. The proposed optimized ANN-GA and WOA models is to circumvent the problem that is characterized in the trade-off between smoothness and accuracies in selecting the models and optimal parameters of neural network.

The proposed work is to extensively evaluate if a user is depressed or not using his Tweets on Twitter. With the omni presence of social media, this method should help in identifying the depression of users. We propose an Optimized Hybrid Neural Network model to evaluate the user tweets on Twitter to analyze if a user is depressed or not. Where Neural Network is trained using Tweets to predict the polarity of Tweets. The Neural Network is trained in such a way that at any point when presented with a Tweet the model outputs the polarity associated with the Tweet. Also, a user-friendly GUI is presented to the user that loads the trained neural network in no time and can be used to analyze the users’ state of depression. The aim of this research work is to provide an algorithm to evaluate users’ sentiment on Twitter in a way better than all other existing techniques


Author(s):  
Soha Abd Mohamed El-Moamen ◽  
Marghany Hassan Mohamed ◽  
Mohammed F. Farghally

The need for tracking and evaluation of patients in real-time has contributed to an increase in knowing people’s actions to enhance care facilities. Deep learning is good at both a rapid pace in collecting frameworks of big data healthcare and good predictions for detection the lung cancer early. In this paper, we proposed a constructive deep neural network with Apache Spark to classify images and levels of lung cancer. We developed a binary classification model using threshold technique classifying nodules to benign or malignant. At the proposed framework, the neural network models training, defined using the Keras API, is performed using BigDL in a distributed Spark clusters. The proposed algorithm has metrics AUC-0.9810, a misclassifying rate from which it has been shown that our suggested classifiers perform better than other classifiers.


2021 ◽  
Author(s):  
Federica Zonzini ◽  
Francesca Romano ◽  
Antonio Carbone ◽  
Matteo Zauli ◽  
Luca De Marchi

Abstract Despite the outstanding improvements achieved by artificial intelligence in the Structural Health Monitoring (SHM) field, some challenges need to be coped with. Among them, the necessity to reduce the complexity of the models and the data-to-user latency time which are still affecting state-of-the-art solutions. This is due to the continuous forwarding of a huge amount of data to centralized servers, where the inference process is usually executed in a bulky manner. Conversely, the emerging field of Tiny Machine Learning (TinyML), promoted by the recent advancements by the electronic and information engineering community, made sensor-near data inference a tangible, low-cost and computationally efficient alternative. In line with this observation, this work explored the embodiment of the One Class Classifier Neural Network, i.e., a neural network architecture solving binary classification problems for vibration-based SHM scenarios, into a resource-constrained device. To this end, OCCNN has been ported on the Arduino Nano 33 BLE Sense platform and validated with experimental data from the Z24 bridge use case, reaching an average accuracy and precision of 95% and 94%, respectively.


2016 ◽  
pp. 89-112
Author(s):  
Pushpendu Kar ◽  
Anusua Das

The recent craze for artificial neural networks has spread its roots towards the development of neuroscience, pattern recognition, machine learning and artificial intelligence. The theoretical neuroscience is basically converging towards the basic concept that the brain acts as a complex and decentralized computer which can perform rigorous calculations in a different approach compared to the conventional digital computers. The motivation behind the study of neural networks is due to their similarity in the structure of the human central nervous system. The elementary processing component of an Artificial Neural Network (ANN) is called as ‘Neuron'. A large number of neurons interconnected with each other mimic the biological neural network and form an ANN. Learning is an inevitable process that can be used to train an ANN. We can only transfer knowledge to the neural network by the learning procedure. This chapter presents the detailed concepts of artificial neural networks in addition to some significant aspects on the present research work.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1662
Author(s):  
Wei Hao ◽  
Feng Liu

Predicting the axle temperature states of the high-speed train under operation in advance and evaluating working states of axle bearings is important for improving the safety of train operation and reducing accident risks. The method of monitoring the axle temperature of a train under operation, combined with the neural network prediction method, was applied. A total of 36 sensors were arranged at key positions such as the axle bearings of the train gearbox and the driving end of the traction motor. The positions of the sensors were symmetrical. Axle temperature measurements over 11 days with more than 38,000 km were obtained. The law of the change of the axle temperature in each section was obtained in different environments. The resultant data from the previous 10 days were used to train the neural network model, and a total of 800 samples were randomly selected from eight typical locations for the prediction of axle temperature over the following 3 min. In addition, the results predicted by the neural network method and the GM (1,1) method were compared. The results show that the predicted temperature of the trained neural network model is in good agreement with the experimental temperature, with higher precision than that of the GM (1,1) method, indicating that the proposed method is sufficiently accurate and can be a reliable tool for predicting axle temperature.


2011 ◽  
Vol 230-232 ◽  
pp. 1104-1109
Author(s):  
Zhen Ping Fan ◽  
Heng Zeng ◽  
Jian Wei Yang ◽  
Jie Li

Lateral semi-active damper is designed by author based on the electro-hydraulic proportional valve, from the perspective angle of improving vehicle comfort; its purpose is to ensure vehicle driving safety. At the same time, the neural network adaptive control strategy is used for joint simulation of semi-active damper. The results show that lateral semi-active damper with the train body has significantly improved compared to the traditional passive lateral damper acceleration.


2004 ◽  
Vol 126 (2) ◽  
pp. 373-384 ◽  
Author(s):  
A. Escalante ◽  
V. Guzma´n ◽  
M. Parada ◽  
L. Medina ◽  
S. E. Diaz

The use of magnetic bearings in high speed/low friction applications is increasing in industry. Magnetic bearings are sophisticated electromechanical systems, and modeling magnetic bearings using standard techniques is complex and time consuming. In this work a neural network is designed and trained to emulate the operation of a complete system (magnetic bearing, PID controller, and power amplifiers). The neural network is simulated and integrated into a virtual instrument that will be used in the laboratory both as a teaching and a research tool. The main aims in this work are: (1) determining the minimum amount of artificial neurons required in the neural network to emulate the magnetic bearing system, (2) determining the more appropriate ANN training method for this application, and (3) determining the errors produced when a neural network trained to emulate system operation with a balanced rotor is used to predict system response when operating with an unbalanced rotor. The neural network is trained using as input the position data from the proximity sensors; neural network outputs are the control signals to the coil amplifiers.


Author(s):  
Adrian Wolny ◽  
Lorenzo Cerrone ◽  
Athul Vijayan ◽  
Rachele Tofanelli ◽  
Amaya Vilches Barro ◽  
...  

ABSTRACTQuantitative analysis of plant and animal morphogenesis requires accurate segmentation of individual cells in volumetric images of growing organs. In the last years, deep learning has provided robust automated algorithms that approach human performance, with applications to bio-image analysis now starting to emerge. Here, we present PlantSeg, a pipeline for volumetric segmentation of plant tissues into cells. PlantSeg employs a convolutional neural network to predict cell boundaries and graph partitioning to segment cells based on the neural network predictions. PlantSeg was trained on fixed and live plant organs imaged with confocal and light sheet microscopes. PlantSeg delivers accurate results and generalizes well across different tissues, scales, and acquisition settings. We present results of PlantSeg applications in diverse developmental contexts. PlantSeg is free and open-source, with both a command line and a user-friendly graphical interface.


2019 ◽  
Vol 9 (16) ◽  
pp. 3355 ◽  
Author(s):  
Min Seop Lee ◽  
Yun Kyu Lee ◽  
Dong Sung Pae ◽  
Myo Taeg Lim ◽  
Dong Won Kim ◽  
...  

Physiological signals contain considerable information regarding emotions. This paper investigated the ability of photoplethysmogram (PPG) signals to recognize emotion, adopting a two-dimensional emotion model based on valence and arousal to represent human feelings. The main purpose was to recognize short term emotion using a single PPG signal pulse. We used a one-dimensional convolutional neural network (1D CNN) to extract PPG signal features to classify the valence and arousal. We split the PPG signal into a single 1.1 s pulse and normalized it for input to the neural network based on the personal maximum and minimum values. We chose the dataset for emotion analysis using physiological (DEAP) signals for the experiment and tested the 1D CNN as a binary classification (high or low valence and arousal), achieving the short-term emotion recognition of 1.1 s with 75.3% and 76.2% valence and arousal accuracies, respectively, on the DEAP data.


Sign in / Sign up

Export Citation Format

Share Document