scholarly journals A Study on the Performance of Soot Probe of Diesel Vehicles using Free Acceleration Mode Method

Author(s):  
Jae-Yeol Kim ◽  
◽  
Il-Seok Chae ◽  
Hoo-suk Oh
Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


2008 ◽  
Vol 7 (2) ◽  
pp. 103-110
Author(s):  
Mishra Rajeev Kumar ◽  
Pandey Govind ◽  
Manoranjan Parida
Keyword(s):  

Optik ◽  
2017 ◽  
Vol 130 ◽  
pp. 1053-1072
Author(s):  
Jinyong Yu ◽  
Junwei Le ◽  
Di Liu

1987 ◽  
Vol 54 (4) ◽  
pp. 904-909 ◽  
Author(s):  
Keqin Gu ◽  
Benson H. Tongue

The traditional approach of using free vibration modes in the assumed mode method often leads to an extremely slow convergence rate, especially when discete interactive forces are involved. By introducing a number of forced modes, significant improvements can be achieved. These forced modes are intrinsic to the structure and the spatial distribution of forces. The motion of the structure can be described exactly by these forced modes and a few free vibration modes provided that certain conditions are satisfied. The forced modes can be viewed as an extension of static modes. The development of a forced mode formulation is outlined and a numerical example is presented.


1975 ◽  
Vol 97 (4) ◽  
pp. 1371-1377 ◽  
Author(s):  
G. B. Warburton

The normal mode method is used to investigate the reduction in the steady-state response of a simply supported cylindrical shell when conventional absorbers are attached to the shell. Two types of excitation are considered: (a) a single radial harmonic force, and (b) a harmonic pressure distributed over the shell surface. The effect upon response of varying the absorber parameters is studied. Optimum conditions for specific cases are obtained and compared with those required to minimize response when absorbers are added to cantilever beams and to the classical single degree of freedom system.


Sign in / Sign up

Export Citation Format

Share Document