scholarly journals Carbon Nanotube Based Delay Model for High Speed Energy Efficient on Chip Data Transmission Using: Current Mode Technique

Author(s):  
Sunil Jadav ◽  
Munish Vashistah ◽  
Rajeevan Chandel
Nanophotonics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 889-898 ◽  
Author(s):  
Hao Jia ◽  
Shanglin Yang ◽  
Ting Zhou ◽  
Sizhu Shao ◽  
Xin Fu ◽  
...  

AbstractThe development of optical interconnect techniques greatly expands the communication bandwidth and decreases the power consumption at the same time. It provides a prospective solution for both intra-chip and inter-chip links. Herein reported is an integrated wavelength-division multiplexing (WDM)-compatible multimode optical switching system-on-chip (SoC) for large-capacity optical switching among processors. The interfaces for the input and output of the processor signals are electrical, and the on-chip data transmission and switching process are optical. It includes silicon-based microring optical modulator arrays, mode multiplexers/de-multiplexers, optical switches, microring wavelength de-multiplexers and germanium-silicon high-speed photodetectors. By introducing external multi-wavelength laser sources, the SoC achieved the function of on-chip WDM and mode-division multiplexing (MDM) hybrid-signal data transmission and switching on a standard silicon photonics platform. As a proof of concept, signals with a 25 Gbps data rate are implemented on each microring modulator of the fabricated SoC. We illustrated 25 × 3 × 2 Gbps on-chip data throughput with two-by-two multimode switching functionality through implementing three wavelength-channels and two mode-channel hybrid-multiplexed signals for each multimode transmission waveguide. The architecture of the SoC is flexible to scale, both for the number of supported processors and the data throughput. The demonstration paves the way to a large-capacity multimode optical switching SoC.


2013 ◽  
Vol 22 (08) ◽  
pp. 1350068
Author(s):  
XINSHENG WANG ◽  
YIZHE HU ◽  
LIANG HAN ◽  
JINGHU LI ◽  
CHENXU WANG ◽  
...  

Process and supply variations all have a large influence on current-mode signaling (CMS) circuits, limiting their application on the fields of high-speed low power communication over long on-chip interconnects. A variation-insensitive CMS scheme (CMS-Bias) was offered, employing a particular bias circuit to compensate the effects of variations, and was robust enough against inter-die and intra-die variations. In this paper, we studied in detail the principle of variation tolerance of the CMS circuit and proposed a more suitable bias circuit for it. The CMS-Bias with the proposed bias circuit (CMS-Proposed) can acquire the same variation tolerance but consume less energy, compared with CMS-Bias with the original bias circuit (CMS-Original). Both the CMS schemes were fabricated in 180 nm CMOS technology. Simulation and measured results indicate that the two CMS interconnect circuits have the similar signal propagation delay when driving signal over a 10 mm line, but the CMS-Proposed offers about 9% reduction in energy/bit and 7.2% reduction in energy-delay-product (EDP) over the CMS-Original. Simulation results show that the two CMS schemes only change about 5% in delay when suffering intra-die variations, and have the same robustness against inter-die variations. Both simulation and measurements all show that the proposed bias circuits, employing self-biasing structure, contribute to robustness against supply variations to some extent. Jitter analysis presents the two CMS schemes have the same noise performance.


2014 ◽  
Vol 29 (9) ◽  
pp. 4479-4484 ◽  
Author(s):  
Hongyi Wang ◽  
Xi Hu ◽  
Quanfeng Liu ◽  
Gangdong Zhao ◽  
Dongzhe Luo

Author(s):  
Tomoaki Maekawa ◽  
Shuhei Amakawa ◽  
Hiroyuki Ito ◽  
Noboru Ishihara ◽  
Kazuya Masu

Sign in / Sign up

Export Citation Format

Share Document