scholarly journals Augmentation of fear extinction by theta-burst transcranial magnetic stimulation of the prefrontal cortex in humans

2021 ◽  
Vol 46 (2) ◽  
pp. E292-E302
Author(s):  
Jiahui Deng ◽  
Wenmei Fang ◽  
Yimiao Gong ◽  
Yanping Bao ◽  
Hui Li ◽  
...  

Background: Fear extinction alone does not erase the original fear memory. Interventions that enhance extinction can be beneficial for the treatment of fear-related disorders. Repetitive transcranial magnetic stimulation has been shown to improve memory performance. The present study examined the effects of intermittent theta-burst stimulation (iTBS) on fear extinction and the return of fear memory in humans. Methods: Ninety-one young healthy volunteers underwent 3 experiments using a randomized controlled experimental design. Participants first acquired fear conditioning, after which they received 30 Hz iTBS before and after extinction training. The iTBS was applied to 1 of 2 targets: the left dorsolateral prefrontal cortex (dlPFC) and the vertex (control). Fear responses were measured 24 hours later and 1 month later. Results: During the spontaneous recovery and reinstatement tests, iTBS of the left dlPFC before and after extinction significantly reduced fear response, whereas iTBS of the vertex had no effect on fear memory performance. This combined approach had a relatively long-lasting effect (i.e., at least 1 month). Limitations: We did not explore the effect of iTBS of the dlPFC on the expression of fear without extinction training. The neural mechanisms of iTBS with fear extinction to inhibit the fear response are unclear. Our results are preliminary and should be interpreted with caution. Conclusion: The present results showed that 30 Hz iTBS of the left dlPFC enhanced retention of fear extinction. Our study introduces a new intervention for fear memory and suggests that the left dlPFC may be a treatment target for fear-related disorders.

2017 ◽  
Vol 41 (1) ◽  
pp. 68-74 ◽  
Author(s):  
A. Gay ◽  
C. Boutet ◽  
T. Sigaud ◽  
A. Kamgoue ◽  
J. Sevos ◽  
...  

AbstractBackgroundGambling disorder (GD) is common and disabling addictive disorder. In patients with substance use disorders, the application of repetitive transcranial magnetic stimulation (rTMS) over the dorsolateral prefrontal cortex (DLPFC) offers promise to alleviate craving. We hypothesized that applying real compared to sham rTMS over the left DLPFC would reduce gambling craving in patients with GD.MethodsIn a randomized sham-controlled crossover design, 22 treatment-seeking patients with GD received real or sham treatment with high frequency rTMS over the left DLPFC followed a week later by the other type of treatment. Before and after each rTMS session, participants rated their gambling craving (from 0 to 100) before and after viewing a gambling video used as a cue. We used the Yale-Brown Obsessive Compulsive Scale adapted for Pathological Gambling to assess gambling behavior before and 7 days after each rTMS session.ResultsAs compared to sham (mean +0.74; standard deviation ± 3.03), real rTMS significantly decreased cue-induced craving (−2.12 ± 3.39; F(1,19) = 4.87; P = 0.04; partial η2 = 0.05; 95% CI: 0.00–0.21). No significant effect of rTMS was observed on gambling behavior.ConclusionsPatients with GD reported decreased cue-induced craving following a single session of high frequency rTMS applied over the left DLPFC. Further large randomized controlled studies are needed to determine the usefulness of rTMS in GD.


2019 ◽  
Vol 45 (4) ◽  
pp. 694-702 ◽  
Author(s):  
Nicholas L. Balderston ◽  
Emily M. Beydler ◽  
Camille Roberts ◽  
Zhi-De Deng ◽  
Thomas Radman ◽  
...  

AbstractMuch of the mechanistic research on anxiety focuses on subcortical structures such as the amygdala; however, less is known about the distributed cortical circuit that also contributes to anxiety expression. One way to learn about this circuit is to probe candidate regions using transcranial magnetic stimulation (TMS). In this study, we tested the involvement of the dorsolateral prefrontal cortex (dlPFC), in anxiety expression using 10 Hz repetitive TMS (rTMS). In a within-subject, crossover experiment, the study measured anxiety in healthy subjects before and after a session of 10 Hz rTMS to the right dorsolateral prefrontal cortex (dlPFC). It used threat of predictable and unpredictable shock to induce anxiety and anxiety potentiated startle to assess anxiety. Counter to our hypotheses, results showed an increase in anxiety-potentiated startle following active but not sham rTMS. These results suggest a mechanistic link between right dlPFC activity and physiological anxiety expression. This result supports current models of prefrontal asymmetry in affect, and lays the groundwork for further exploration into the cortical mechanisms mediating anxiety, which may lead to novel anxiety treatments.


2008 ◽  
Vol 39 (1) ◽  
pp. 65-75 ◽  
Author(s):  
D. J. L. G. Schutter

BackgroundFor more than a decade high-frequency repetitive transcranial magnetic stimulation (rTMS) has been applied to the left dorsolateral prefrontal cortex (DLPFC) in search of an alternative treatment for depression. The aim of this study was to provide an update on its clinical efficacy by performing a meta-analysis involving double-blind sham-controlled studies.MethodA literature search was conducted in the databases PubMed and Web of Science in the period between January 1980 and November 2007 with the search terms ‘depression’ and ‘transcranial magnetic stimulation’. Thirty double-blind sham-controlled parallel studies with 1164 patients comparing the percentage change in depression scores from baseline to endpoint of activeversussham treatment were included. A random effects meta-analysis was performed to investigate the clinical efficacy of fast-frequency rTMS over the left DLPFC in depression.ResultsThe test for heterogeneity was not significant (QT=30.46,p=0.39). A significant overall weighted mean effect size,d=0.39 [95% confidence interval (CI) 0.25–0.54], for active treatment was observed (z=6.52,p<0.0001). Medication resistance and intensity of rTMS did not play a role in the effect size.ConclusionsThese findings show that high-frequency rTMS over the left DLPFC is superior to sham in the treatment of depression. The effect size is robust and comparable to at least a subset of commercially available antidepressant drug agents. Current limitations and future prospects are discussed.


2017 ◽  
Author(s):  
Derek Evan Nee ◽  
Mark D’Esposito

AbstractThe lateral prefrontal cortex (LPFC) is essential for higher-level cognition, but how interactions among LPFC areas support cognitive control has remained elusive. In previous work, dynamic causal modeling (DCM) of fMRI data revealed that demands on cognitive control elicited a convergence of influences towards mid LPFC. We proposed that these findings reflect the integration of abstract, rostral and concrete, caudal influences to inform context-appropriate action. Here, we provide a causal test of this model using continuous theta-burst transcranial magnetic stimulation (cTBS). cTBS was applied to caudal, mid, or rostral LPFC, as well as a control site in counterbalanced sessions. In most cases, behavioral modulations resulting from cTBS could be predicted based upon the direction of influences within the previously estimated DCM. However, inconsistent with our DCM, we found that cTBS to caudal LPFC impaired cognitive control processes presumed to involve rostral LPFC. Revising the original DCM with a pathway from caudal LPFC to rostral LPFC significantly improved the fitted DCM and accounted for the observed behavioral findings. These data provide causal evidence for LPFC dynamics supporting cognitive control and demonstrate the utility of combining DCM with causal manipulations to create, test, and refine models of cognition.


2019 ◽  
Author(s):  
Leonore Bovy ◽  
Ruud M.W.J. Berkers ◽  
Julia Pottkämper ◽  
Rathiga Varatheesvaran ◽  
Guillén Fernández ◽  
...  

AbstractMemory bias for negative information is a critical characteristic of major depression, but the underlying neural mechanisms are largely unknown. The recently revived concept of memory schemas may shed new light on memory bias in depression: negative schemas might enhance the encoding and consolidation of negative experiences, thereby contributing to the genesis and perpetuation of depressive pathology. To investigate this relationship, we aimed to transiently perturb processing in the medial prefrontal cortex (mPFC), a core region involved in schema memory, using neuronavigated transcranial magnetic stimulation (TMS) targeting the mPFC. Forty healthy volunteers first underwent a negative mood induction to activate negative schema processing after which they received either active inhibitory (N = 20) or control (N = 20) stimulation to the mPFC. Then, all participants performed the encoding of an emotional false memory task. Recall and recognition performance was tested the following morning. Polysomnographic data was recorded continuously during the night before and after encoding. Secondary measures included sleep and mood questionnaires. We observed a significantly lower number of false recognition of negative critical lures following mPFC perturbation compared to the control group, whereas no differences in veridical memory performance were observed. These findings were supported by reaction time data. No relation between REM sleep and (false) emotional memory performance was observed. These findings support previous causal evidence for a role of the mPFC in schema memory processing and further suggest a role of the mPFC in memory bias.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jing Pan ◽  
Tao-Mian Mi ◽  
Jing-Hong Ma ◽  
Hong Sun ◽  
Piu Chan

Background: Fatigue is a common symptom in patients with Multiple system atrophy (MSA), but effective treatments remain elusive. The present study aims to investigate whether high-frequency repetitive transcranial magnetic stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) could relieve fatigue in patients with MSA.Methods: This is a single-center, randomized and double-blind trial. Twenty-two patients with MSA and fatigue were randomly allocated to receive 10 sessions of either active (N = 11) or sham (N = 11) 10 Hz rTMS over the left DLPFC. The participants were assessed at baseline (T0), after the last session of treatment (T1), and at 2-week (T2), and 4-week (T3) follow-up timepoints. The primary outcomes were Fatigue Severity Scale-9 (FSS-9) scores, with Unified Multiple System Atrophy Rating Scale (UMSARS), 17-item Hamilton Depression Scale (HAMD-17), and Hamilton Anxiety Scale (HAMA) as secondary outcomes.Results: Two-way repeated ANOVAs revealed significant group × time interactions for FSS-9 scores (p &lt; 0.001), HAMD-17 scores (p = 0.01), HAMA scores (p = 0.01), and UMRSA part II (p = 0.05). Post-hoc analyses showed that compared to T0, the active group exhibited remarkable improvements in FSS-9 and UMRSA part II scores at T1 and T2, but not at T3, and also in HAMD-17 and HAMA scores at T1, T2, and T3. No significant improvement was found in the sham group.Conclusion: High-frequency rTMS over the left DLPFC could provide short-term improvements for alleviating fatigue in patients with MSA, but the beneficial effects last no more than 4 weeks.


Sign in / Sign up

Export Citation Format

Share Document